Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.
A Role for Mac-1 (CDIIb/CD18) in Immune Complex–stimulated Neutrophil Function In Vivo: Mac-1 Deficiency Abrogates Sustained Fcγ Receptor–dependent Neutrophil Adhesion and Complement-dependent Proteinuria in Acute Glomerulonephritis
Address correspondence to T.N. Mayadas, Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., Rm 404, Boston, MA 02115. Phone: 617-278-0194; FAX: 617-732-5933; E-mail: [email protected]
This research was supported by National Institutes of Health research grants NS-33296, DK-51643 (T.N. Mayadas), and PO1 HL-36028 (R.S. Cotran), and a grant from the National Multiple Sclerosis Society (T.N. Mayadas); a postdoctoral fellowship from the National Multiple Sclerosis Society (T. Tang); and an Erwin Schroedinger scholarship from the Austrian Science Foundation (A. Rosenkranz).
Abbreviations used in this paper: F-actin, filamentous actin; IC, immune complex; ICAM-1, intercellular adhesion molecule 1; GBM, glomerular basement membrane; LTB4, leukotriene B4; PMN, polymorphonuclear neutrophil.
Part of this work was previously presented as an abstract (1996. J. Vasc. Res. 33[S1]:A393).
Tao Tang, Alexander Rosenkranz, Karel J.M. Assmann, Michael J. Goodman, Jose-Carlos Gutierrez-Ramos, Michael C. Carroll, Ramzi S. Cotran, Tanya N. Mayadas; A Role for Mac-1 (CDIIb/CD18) in Immune Complex–stimulated Neutrophil Function In Vivo: Mac-1 Deficiency Abrogates Sustained Fcγ Receptor–dependent Neutrophil Adhesion and Complement-dependent Proteinuria in Acute Glomerulonephritis . J Exp Med 1 December 1997; 186 (11): 1853–1863. doi: https://doi.org/10.1084/jem.186.11.1853
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement