Whereas the signaling function of the interleukin 1 (IL-1) receptor type I (IL-1R I) has been well documented, the type II "receptor" has been suggested to act as a decoy target for this cytokine. Since IL-1 may represent a key target of the immunomodulatory and antiinflammatory properties of glucocorticoids (GC), the aim of this study was to investigate the effects of dexamethasone (Dex) on IL-1R expression in human polymorphonuclear leukocytes (PMN), which express predominantly the type II molecule (IL-1R II). We found that Dex augments the levels of steady state transcripts encoding the IL-1R I and, most prominently, those of IL-1R II. Dex induced both transcripts via transcription-dependent mechanisms and by prolongation of the mRNAs half-lives. Inhibition of protein synthesis superinduced basal and Dex-augmented IL-1R II mRNA, whereas it completely inhibited the induction by Dex of IL-1R I transcripts. Induction of IL-1R II mRNA by Dex was associated with augmented membrane expression and release of the type II IL-1 binding molecule. This effect was mediated by the GC receptor. Other steroids (17 beta-estradiol, progesterone, and testosterone) were ineffective. The concentrations of IL-1 alpha and IL-1 receptor antagonist required to displace the binding of IL-1 beta to the soluble form of the decoy molecule induced by Dex from PMN were, respectively, 100 and 2 times higher compared with IL-1 beta. The induction by Dex of the type II receptor, a decoy molecule for IL-1, may contribute to the immunosuppressive and antiinflammatory activities of Dex.

This content is only available as a PDF.
You do not currently have access to this content.