Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
U T Meier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 127 (6): 1505–1514.
Published: 15 December 1994
Abstract
We report the identification and molecular characterization of a novel nucleolar protein of rat liver. As shown by coimmunoprecipitation this protein is associated with a previously identified nucleolar protein, Nopp140, in an apparently stoichiometric complex and has therefore been termed NAP57 (Nopp140-associated protein of 57 kD). Immunofluorescence and immunogold electron microscopy with NAP57 specific antibodies show colocalization with Nopp140 to the dense fibrillar component of the nucleolus, to coiled bodies, and to the nucleoplasm. Immunogold staining in the nucleoplasm is occasionally seen in the form of curvilinear tracks between the nucleolus and the nuclear envelope, similar to those previously reported for Nopp140. These data suggest that Nopp140 and NAP57 are indeed associated with each other in these nuclear structures. The cDNA deduced primary structure of NAP57 shows a protein of a calculated molecular mass of 52,070 that contains a putative nuclear localization signal near its amino and carboxy terminus and a hydrophobic amino acid repeat motif extending across 84 residues. Like Nopp140, NAP57 lacks any of the known consensus sequences for RNA binding which are characteristic for many nucleolar proteins. Data bank searches revealed that NAP57 is a highly conserved protein. A putative yeast (S. cerevisiae) homolog is 71% identical. Most strikingly, there also appears to be a smaller prokaryotic (E. coli and B. subtilis) homolog that is nearly 50% identical to NAP57. This indicates that NAP57 and its putative homologs might serve a highly conserved function in both pro- and eukaryotes such as chaperoning of ribosomal proteins and/or of preribosome assembly.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (6): 2235–2245.
Published: 01 December 1990
Abstract
We used functional wild-type and mutant synthetic nuclear localization signal peptides of SV-40 T antigen cross-linked to human serum albumin (peptide conjugates) to assay their binding to proteins of rat liver nuclei on Western blots. Proteins of 140 and 55 kD (p140 and p55) were exclusively recognized by wild-type peptide conjugates. Free wild-type peptides competed for the wild-type peptide conjugate binding to p140 and p55 whereas free mutant peptides, which differed by a single amino acid from the wild type, competed less efficiently. The two proteins were extractable from nuclei by either low or high ionic strength buffers. We purified p140 and raised polyclonal antibodies in chicken against the protein excised from polyacrylamide gels. The anti-p140 antibodies were monospecific as judged by their reactivity with a single nuclear protein band of 140 kD on Western blots of subcellular fractions of whole cells. Indirect immunofluorescence microscopy on fixed and permeabilized Buffalo rat liver (BRL) cells with anti-p140 antibodies exhibited a distinct punctate nucleolar staining. Rhodamine-labeled wild-type peptide conjugates also bound to nucleoli in a similar pattern on fixed and permeabilized BRL cells. Based on biochemical characterization, p140 is a novel nucleolar protein. It is possible that p140 shuttles between the nucleolus and the cytoplasm and functions as a nuclear import carrier.