Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
R Nave
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (5): 2177–2187.
Published: 01 November 1989
Abstract
TII, the extractable form of titin, was purified from myofibrils and separated by high resolution gel permeation chromatography into two fractions (TIIA and TIIB). Novel specimen orientation methods used before metal shadowing and EM result in striking pictures of the two forms. Molecules layered on mica become uniformly oriented when subjected to centrifugation. TIIB comprises a very homogeneous fraction. All molecules reveal a single globular head at one end on a long and very thin rod of uniform diameter. The lengths of the rods have a very narrow distribution (900 +/- 50 nm). TIIA molecules seem lateral oligomers of TIIB, attached to each other via the head regions. While dimers are the predominant species, trimers and some higher oligomers can also be discerned. Mild proteolysis destroys the heads and converts TIIA and TIIB into TIIB-like rods. Similar molecules also result from titin purified from myofibrils by certain established purification schemes. Headless titin molecules show in gel electrophoresis only the TII band, while head bearing molecules give rise to two additional polypeptides at 165 and 190 kD. Immunoelectron microscopy of myofibrils identifies both titin-associated proteins as M band constituents. We speculate that in the polar images of TII the globular head region corresponds to the M band end of the titin molecules. This hypothesis is supported by immunoelectron micrographs of TIIB molecules using titin antibodies of known epitope location in the half sarcomere. This proposal complements our previous immunoelectron microscopic data on myofibrils. They showed that epitopes present only on the nonextractable TI species locate to the Z line and its immediately adjacent region (Fürst, D. O., M. Osborn, R. Nave, and K. Weber. 1988. J. Cell Biol. 106:1563-1572). Thus, the two distinct ends of the titin molecule attach to Z and M band material respectively.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 106 (5): 1563–1572.
Published: 01 May 1988
Abstract
mAbs specific for titin or nebulin were characterized by immunoblotting and fluorescence microscopy. Immunoelectron microscopy on relaxed chicken breast muscle revealed unique transverse striping patterns. Each of the 10 distinct titin antibodies provided a pair of delicate decoration lines per sarcomere. The position of these pairs was centrally symmetric to the M line and was antibody dependent. The results provided a linear epitope map, which starts at the Z line (antibody T20), covers five distinct positions along the I band (T21, T12, T4, T1, T11), the A-I junction (T3), and three distinct positions within the A band (T10, T22, T23). The epitope of T23 locates 0.2 micron before the M line. In immunoblots, the two antibodies decorating at or just before the Z line (T20, T21) specifically recognized the insoluble titin TI component but did not recognize TII, a proteolytic derivative. All other titin antibodies recognized TI and TII. Thus titin molecules appear as polar structures lacking over large regions repetitive epitopes. One physical end seems related to Z line anchorage, while the other may bind close to the M line. Titin epitopes influenced by the contractional state of the sarcomere locate between the N1 line and the A-I junction (T4, T1, T11). We discuss the results in relation to titin molecules having half-sarcomere lengths. The three nebulin antibodies so far characterized again give rise to distinct pairs of stripes. These locate close to the N2 line.