Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
M Noble
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1992) 118 (4): 889–900.
Published: 15 August 1992
Abstract
We have shown previously that oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells isolated from adult rat optic nerves can be distinguished in vitro from their perinatal counterparts on the basis of their much slower rates of division, differentiation, and migration when grown in the presence of cortical astrocytes or PDGF. This behavior is consistent with in vivo observations that there is only a modest production of oligodendrocytes in the adult CNS. As such a behavior is inconsistent with the likely need for a rapid generation of oligodendrocytes following demyelinating damage to the mature CNS, we have been concerned with identifying in vitro conditions that allow O-2Aadult progenitor cells to generate rapidly large numbers of progeny cells. We now provide evidence that many slowly dividing O-2Aadult progenitor cells can be converted to rapidly dividing cells by exposing adult optic nerve cultures to both PDGF and bFGF. In addition, these O-2Aadult progenitor cells appear to acquire other properties of O-2Aperinatal progenitor cells, such as bipolar morphology and high rate of migration. Although many O-2Aadult progenitor cells in cultures exposed to bFGF alone also divide rapidly, these cells are multipolar and migrate little in vitro. Oligodendrocytic differentiation of O-2Aadult progenitor cells, which express receptors for bFGF in vitro, is almost completely inhibited in cultures exposed to bFGF or bFGF plus PDGF. As bFGF and PDGF appear to be upregulated and/or released after injury to the adult brain, this particular in vitro response of O-2Aadult progenitor cells to PDGF and bFGF may be of importance in the generation of large numbers of new oligodendrocytes in vivo following demyelination.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1992) 116 (1): 167–176.
Published: 01 January 1992
Abstract
We have been studying the differing characteristics of oligodendrocyte-type-2 astrocyte (O-2A) progenitors isolated from optic nerves of perinatal and adult rats. These two cell types display striking differences in their in vitro phenotypes. In addition, the O-2Aperinatal progenitor population appears to have a limited life-span in vivo, while O-2Aadult progenitors appear to be maintained throughout life. O-2Aperinatal progenitors seem to have largely disappeared from the optic nerve by 1 mo after birth, and are not detectable in cultures derived from optic nerves of adult rats. In contrast, O-2Aadult progenitors can first be isolated from optic nerves of 7-d-old rats and are still present in optic nerves of 1-yr-old rats. These observations raise two questions: (a) From what source do O-2Aadult progenitors originate; and (b) how is the O-2Aadult progenitor population maintained in the nerve throughout life? We now provide in vitro evidence indicating that O-2Aadult progenitors are derived directly from a subpopulation of O-2Aperinatal progenitors. We also provide evidence indicating that O-2Aadult progenitors are capable of prolonged self renewal in vitro. In addition, our data suggests that the in vitro generation of oligodendrocytes from O-2Aadult progenitors occurs primarily through asymmetric division and differentiation, in contrast with the self-extinguishing pattern of symmetric division and differentiation displayed by O-2Aperinatal progenitors in vitro. We suggest that O-2Aadult progenitors express at least some properties of stem cells and thus may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment throughout adult life.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (6): 3367–3376.
Published: 01 December 1989
Abstract
We report the complete sequence of the microtubule-associated protein MAP1B, deduced from a series of overlapping genomic and cDNA clones. The encoded protein has a predicted molecular mass of 255,534 D and contains two unusual sequences. The first is a highly basic region that includes multiple copies of a short motif of the form KKEE or KKEVI that are repeated, but not at exact intervals. The second is a set of 12 imperfect repeats, each of 15 amino acids and each spaced by two amino acids. Subcloned fragments spanning these two distinctive regions were expressed as labeled polypeptides by translation in a cell-free system in vitro. These polypeptides were tested for their ability to copurify with unlabeled brain microtubules through successive cycles of polymerization and depolymerization. The peptide corresponding to the region containing the KKEE and KKEVI motifs cycled with brain microtubules, whereas the peptide corresponding to the set of 12 imperfect repeats did not. To define the microtubule binding domain in vivo, full-length and deletion constructs encoding MAP1B were assembled and introduced into cultured cells by transfection. The expression of transfected polypeptides was monitored by indirect immunofluorescence using anti-MAP1B-specific antisera. These experiments showed that the basic region containing the KKEE and KKEVI motifs is responsible for the interaction between MAP1B and microtubules in vivo. This region bears no sequence relationship to the microtubule binding domains of kinesin, MAP2, or tau.