Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-6 of 6
K M Trybus
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 126 (5): 1195–1200.
Published: 01 September 1994
Abstract
Regulatory light chain phosphorylation is required for assembly of smooth and non-muscle myosins in vitro, but its effect on polymerization within the cell is not understood. Relaxed smooth muscle cells contain dephosphorylated thick filaments, but this does not exclude the presence of a pool of folded myosin monomers which could be recruited to assemble when phosphorylated, thus forming part of smooth muscle's activation pathway. To test this hypothesis, relaxed and contracted avian gizzard cryosections were labeled with a fluorescently conjugated monoclonal antibody specific for the folded monomeric conformation, or with an antibody against the tip of the tail whose epitope is accessible in the monomeric but not the filamentous state. Fluorescence intensity observed in the two physiological states was quantitated by digital imaging microscopy. Only trace amounts of folded monomeric myosin were detected in both the relaxed and contracted states. The amount of monomer also did not increase when alpha-toxin permeabilized gizzard was equilibrated in a solvent that disassembles filaments in vitro. Assembly/disassembly is therefore unlikely to play a major role in regulating the contraction/relaxation cycle in smooth muscle cells.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (2): 453–463.
Published: 01 August 1990
Abstract
Although it is generally believed that phosphorylation of the regulatory light chain of myosin is required before smooth muscle can develop force, it is not known if the overall degree of phosphorylation can also modulate the rate at which cross-bridges cycle. To address this question, an in vitro motility assay was used to observe the motion of single actin filaments interacting with smooth muscle myosin copolymers composed of varying ratios of phosphorylated and unphosphorylated myosin. The results suggest that unphosphorylated myosin acts as a load to slow down the rate at which actin is moved by the faster cycling phosphorylated cross-bridges. Myosin that was chemically modified to generate a noncycling analogue of the "weakly" bound conformation was similarly able to slow down phosphorylated myosin. The observed modulation of actin velocity as a function of copolymer composition can be accounted for by a model based on mechanical interactions between cross-bridges.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (6): 2879–2886.
Published: 01 December 1989
Abstract
Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the rod is different in the folded than the extended monomeric state, and suggest that this perturbation may extend into the subfragment 2 region of the rod. Two antihead antibodies with epitopes on the heavy chain map at or near the head/rod junction. Magnesium greatly enhances the binding of these antibodies to myosin, showing that the conformation of the heavy chain in the neck region changes upon divalent cation binding to the regulatory light chain. Myosin assembly is also altered by antibody binding. Antibodies that bind to the central region of the rod block disassembly of filaments upon MgATP addition. Antibodies with epitopes near the COOH terminus of the rod, in contrast, promote filament depolymerization, suggesting that this region of the tail is important for assembly. The monoclonal antibodies described here are therefore useful both for detecting and altering conformational states of smooth muscle myosin.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (6): 2887–2894.
Published: 01 December 1989
Abstract
The enzymatic activity of filamentous dephosphorylated smooth muscle myosin has been difficult to determine because the polymer disassembles to the folded conformation in the presence of MgATP. Monoclonal antirod antibodies were used here to "fix" dephosphorylated myosin in the filamentous state. The steady-state actin-activated ATPase of phosphorylated filaments was 30-100-fold higher than that of antibody-stabilized dephosphorylated filaments, suggesting that phosphorylation can activate ATPase activity independent of changes in assembly. The degree of regulation may exceed 100-fold, because steady-state measurements slightly overestimate the rate of product release from dephosphorylated filaments. Single-turnover experiments in the absence of actin showed that although dephosphorylated folded myosin released products at the low rate of 0.0005 s-1 (Cross, R. A., K. E. Cross, A. Sobieszek. 1986. EMBO [Eur. Mol. Biol. Organ.] J. 5:2637-2641) the rate of product release from dephosphorylated filaments was only 3-12-fold higher, depending on the ionic strength. The addition of actin did not increase this rate to any appreciable extent. Dephosphorylated filaments and dephosphorylated heavy meromyosin (Sellers, J. R. 1985. J. Biol. Chem. 260:15815-15819) thus have similar low rates of phosphate release both in the presence and absence of actin. These results show that light chain phosphorylation alone, without invoking other mechanisms, is an effective switch for regulating the activity of smooth muscle myosin filaments.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1987) 105 (6): 3007–3019.
Published: 01 December 1987
Abstract
Small bipolar filaments, or "minifilaments," are formed when smooth muscle myosin is dialyzed against low ionic strength pyrophosphate or citrate/Tris buffers. Unlike synthetic filaments formed at approximately physiological ionic conditions, minifilaments are homogeneous as indicated by their hypersharp boundary during sedimentation velocity. Electron microscopy and hydrodynamic techniques were used to show that 20-22S smooth muscle myosin minifilaments are 380 nm long and composed of 12-14 molecules. By varying solvents, a continuum of different size polymers in the range of 15-30S could be obtained. Skeletal muscle myosin, in contrast, preferentially forms a stable 32S minifilament (Reisler, E., P. Cheung, and N. Borochov. 1986. Biophys. J. 49:335-342), suggesting underlying differences in the assembly properties of the two myosins. Addition of salt to the smooth muscle myosin minifilaments caused unidirectional growth into a longer "side-polar" type of filament, whereas bipolar filaments were consistently formed by skeletal muscle myosin. As with synthetic filaments, addition of 1 mM MgATP caused dephosphorylated minifilaments to dissociate to a mixture of folded monomers and dimers. Phosphorylation of the regulatory light chain prevented disassembly by nucleotide, even though it had no detectable effect on the structure of the minifilament. These results suggest that differences in filament stability as a result of phosphorylation are due largely to conformational changes occurring in the myosin head, and are not due to differences in filament packing.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1987) 105 (6): 3021–3030.
Published: 01 December 1987
Abstract
Filaments formed from phosphorylated smooth muscle myosin are stable in the presence of MgATP, whereas dephosphorylated filaments are disassembled to a mixture of folded monomers and dimers. The stability of copolymers of phosphorylated and dephosphorylated myosin was, however, unknown. Gel filtration, sedimentation velocity, and pelleting assays were used to show that MgATP could dissociate dephosphorylated myosin from copolymers containing either rod and myosin or dephosphorylated and phosphorylated myosin. Copolymers were typically formed by dialyzing monomeric mixtures into filament-forming buffer but, unexpectedly, could also be formed within minutes of mixing preformed rod and myosin minifilaments. This result suggested that molecules can rapidly and extensively exchange between filaments, presumably via the monomeric pool of myosin in equilibrium with polymer. An exchange of molecules between filaments was demonstrated directly by electron microscopy using gold-labeled streptavidin or antibody to detect the exchanged species. By this approach it was shown that smooth muscle myosin filaments, like other macromolecular assemblies, are dynamic structures that can readily alter their composition in response to changing solvent conditions. Moreover, because folded monomeric myosin is unable to polymerize, these experiments suggest a mechanism for the disassembly of the filament by MgATP.