Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
J Wesseling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 129 (1): 255–265.
Published: 01 April 1995
Abstract
Episialin (MUC1) is a transmembrane molecule with a large mucin-like extracellular domain protruding high above the cell surface. The molecule is located at the apical side of most glandular epithelial cells, whereas in carcinoma cells it is often present at the entire surface and it is frequently expressed in abnormally large quantities. We have previously shown that overexpression of episialin reduces cell-cell interactions. Here we show that the integrin-mediated adhesion to extracellular matrix of transfectants of a melanoma cell line (A375), a transformed epithelial cell line (MDCK-ras-e) and a human breast epithelial cell line (HBL-100) is reduced by high levels of episialin. This reduction can be reversed by inducing high avidity of the beta 1 integrins by mAb TS2/16 (at least for beta 1-mediated adhesion). The adhesion can also be restored by redistribution of episialin on the cell surface by monoclonal antibodies into patches or caps. Similarly, capping of episialin on ZR-75-1 breast carcinoma cells, growing in suspension, caused adherence and spreading of these cells. We propose that there is a delicate balance between adhesion and anti-adhesion forces in episialin expressing cells, which can be shifted towards adhesion by strengthening the integrin-mediated adhesion, or towards anti-adhesion by increasing the level of expression of episialin.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 127 (6): 2071–2080.
Published: 15 December 1994
Abstract
TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes. However, despite high cell surface levels of alpha 6 beta 4, TA3/Ha cells do not adhere to the alpha 6 beta 4 ligands laminin and kalinin. Here we show that this is due to the mucin epiglycanin that is highly expressed on TA3/Ha cells. Some monoclonal antibodies generated against epiglycanin induced capping of most of the epiglycanin molecules. TA3/Ha cells treated with these mAb did adhere to laminin and kalinin, and an epithelial monolayer was formed on kalinin, with alpha 6 beta 4 localized in HD1-containing hemidesmosome-like structures and E-cadherin at the cell-cell contact sites. Similar results were obtained after treatment of TA3/Ha cells with O-sialoglycoprotein endopeptidase which removes all epiglycanin. In addition, the enzyme induced E-cadherin-mediated cell-cell aggregation. Both treatments also enhanced the adhesion to hepatocytes, but given the potent antiadhesive effect of epiglycanin it is remarkable that nontreated TA3/Ha cells adhere to hepatocytes at all. We found that during this interaction, epiglycanin was redistributed. We conclude that epiglycanin can completely prevent both intercellular and matrix adhesion, but that this effect can be overcome in certain intercellular interactions because of the induced redistribution of the mucin.