Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
Heather Wiegand
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 143 (2): 309–318.
Published: 19 October 1998
Abstract
Although importin α (Imp α) has been shown to act as the receptor for basic nuclear localization signals (NLSs) and to mediate their recruitment to the importin β nuclear import factor, little is known about the functional domains present in Imp α, with the exception that importin β binding is known to map close to the Imp α NH 2 terminus. Here, we demonstrate that sequences essential for binding to the CAS nuclear export factor are located near the Imp α COOH terminus and include a critical acidic motif. Although point mutations introduced into this acidic motif inactivated both CAS binding and Imp α nuclear export, a putative leucine-rich nuclear export signal proved to be neither necessary nor sufficient for Imp α nuclear export. Analysis of sequences within Imp α that bind to the SV-40 T antigen NLS or to the similar LEF-1 NLS revealed that both NLSs interact with a subset of the eight degenerate armadillo (Arm) repeats that form the central part of Imp α. However, these two NLS-binding sites showed only minimal overlap, thus suggesting that the degeneracy of the Arm repeat region of Imp α may serve to facilitate binding to similar but nonidentical basic NLSs. Importantly, the SV-40 T NLS proved able to specifically inhibit the interaction of Imp α with CAS in vitro, thus explaining why the SV-40 T NLS is unable to also function as a nuclear export signal.