Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
E. Gantt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1972) 54 (2): 313–324.
Published: 01 August 1972
Abstract
A procedure was developed for the isolation of phycobilisomes from Porphyridium cruentum . The cell homogenate, suspended in phosphate buffer (pH 6.8), was treated with 1% Triton X-100, and its supernatant fraction was centrifuged on a sucrose step gradient. Phycobilisomes were recovered in the 1 M sucrose band. The phycobilisome fraction was identified by the characteristic appearance of the phycobilisomes, and the absorbance of the component pigments: phycoerythrin, R-phycocyanin, and allophycocyanin Isolated phycobilisomes had a prolate shape, with one particle axis longer than the other. Their size varied somewhat with their integrity, but was about 400–500 A (long axis) by 300–320 A (short axis). Phycobilisome recovery was determined at six phosphate buffer concentrations from 0.067 M to 1.0 M . In 0.5 M phosphate, phycobilisome yield (60%) and preservation were optimal. Such a preparation had a phycoerythrin 545 nm/phycocyanin 620 nm ratio of 8.4. Of the detergents tested (Triton X-100, Tween 80, and sodium deoxycholate), Triton X-100 gave the best results Freezing of the cells caused destruction of phycobilisomes.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1971) 48 (2): 280–290.
Published: 01 February 1971
Abstract
Selective extraction and morphological evidence indicate that the phycobiliproteins in three Cryptophyceaen algae ( Chroomonas, Rhodomonas , and Cryptomonas ) are contained within intrathylakoidal spaces and are not on the stromal side of the lamellae as in the red and blue-green algae. Furthermore, no discrete phycobilisome-type aggregates have thus far been observed in the Cryptophyceae. Structurally, although not necessarily functionally, this is a radical difference. The width of the intrathylakoidal spaces can vary but is generally about 200–300 A. While the thylakoid membranes are usually closely aligned, grana-type fusions do not occur. In Chroomonas these membranes evidence an extensive periodic display with a spacing on the order of 140–160 A. This periodicity is restricted to the membranes and has not been observed in the electron-opaque intrathylakoidal matrix.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1966) 29 (3): 423–434.
Published: 01 June 1966
Abstract
Small granules with a diameter of approximately 350 A are attached to the chloroplast lamellae of the red alga Porphyridium cruentum . To some extent, their size depends on the culture conditions and the age of the cell. It was possible to preserve the granules only with aldehyde prefixation. It can be seen that fixed or negatively stained granules are comprised of smaller subunits. The granules are arranged regularly on the lamellae in repeating rows with a center-to-center granule distance of 400 to 500 A. Attempts at characterization of these chloroplast granules revealed that they are resistant to hydrolysis by ribonuclease and appear to be structurally unaffected by methanol-acetone extraction. Because of their close association with the chloroplast lamellae, they are considered as possible sites of phycobilin concentration. This possibility is supported by two observations: when the phycobilins are removed, the granules disappear; and, when the chlorophyll and stainable membrane portions are selectively removed, the phycobilins and granules are still present. It was found that all other marine red algae examined had granules which were associated with the chloroplast lamellae.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1965) 26 (2): 365–381.
Published: 01 August 1965
Abstract
An electron microscopic examination of Porphyridium cruentum revealed the presence of mitochondria which had been reported absent in this aerobic organism. The chloroplast in this red alga was found to contain small granules (about 320 A) regularly arranged along the parallel chloroplast lamellae. The chloroplast granules differ in size and staining intensity from the ribosomes located in the cytoplasm. Two tubular elements are described. One type (450 to 550 A) is associated with the Golgi bodies. Another type (350 A), in the cell periphery, is believed to connect the endoplasmic reticulum and the cell membrane. Daughter nuclei were found to be positioned at opposite ends of the cell prior to commencement of cell division. Cytokinesis is accomplished by an annular median constriction causing the gradual separation of the chloroplast, pyrenoid, and other cell organelles, resulting in two equal daughter cells. No appreciable differences were observed between cells grown in high light (400 ft-c) and low light (40 ft-c). Structural differences between young and old cells were compared.