Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-15 of 15
D P Kiehart
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 134 (6): 1345–1348.
Published: 15 September 1996
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 131 (1): 1–5.
Published: 01 October 1995
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (6): 2405–2416.
Published: 01 December 1990
Abstract
We used a series of COOH-terminally deleted recombinant myosin molecules to map precisely the binding sites of 22 monoclonal antibodies along the tail of Acanthamoeba myosin-II. These antibodies bind to 14 distinguishable epitopes, some separated by less than 10 amino acids. The positions of the binding sites visualized by electron microscopy agree only approximately with the physical positions of these sites on the alpha-helical coiled-coil tail. On the other hand, the epitope map agrees precisely with competitive binding studies: all antibodies that share an epitope compete with each other for binding to myosin. Antibodies with adjacent epitopes can compete with each other at linear distances up to 5 or 6 nm, and many antibodies that bind 3-7-nm apart can enhance the binding of each other to myosin. Most of the antibodies that bind to the distal 37 nm of the tail disrupt assembly of octameric minifilaments and, depending upon the exact location of the binding site, stop assembly at specific steps yielding, for example, monomers, antiparallel dimers, parallel dimers or antiparallel tetramers. The effects of these antibodies on assembly identify sites on the tail that are required for individual steps in minifilament assembly. Experiments on the assembly of truncated myosin-II tails have revealed a complementary group of sites that participate in the assembly reactions (Sinard, J.H., D.L. Rimm, and T.D. Pollard. 1990. J. Cell Biol. 111:2417-2426). Antibodies that bind to the distal tail but do not affect assembly appear to have a low affinity for myosin-II. Antibodies that bind to the proximal 50 nm of the tail do not inhibit the assembly of minifilaments. Many antibodies that bind to the tail of myosin-II, even some that have no obvious effect on minifilament assembly, can inhibit the actomyosin ATPase activity and the contraction of an actin gel formed in crude extracts. An antibody that binds between amino acids 1447 and 1467 inhibits the phosphorylation of serine residues distal to residue 1483.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (5): 1849–1858.
Published: 01 November 1990
Abstract
Spectrins are a major component of the membrane skeleton in many cell types where they are thought to contribute to cell form and membrane organization. Diversity among spectrin isoforms, especially their beta subunits, is associated with diversity in cell shape and membrane architecture. Here we describe a spectrin isoform from Drosophila that consists of a conventional alpha spectrin subunit complexed with a novel high molecular weight beta subunit (430 kD) that we term beta H. The native alpha beta H molecule binds actin filaments with high affinity and has a typical spectrin morphology except that it is longer than most other spectrin isoforms and includes two knoblike structures that are attributed to a unique domain of the beta H subunit. Beta H is encoded by a different gene than the previously described Drosophila beta-spectrin subunit but shows sequence similarity to beta-spectrin as well as vertebrate dystrophin, a component of the membrane skeleton in muscle. By size and sequence similarity, dystrophin is more similar to this newly described beta-spectrin isoform (beta H) than to other members of the spectrin gene family such as alpha-spectrin and alpha-actinin.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 108 (5): 1697–1709.
Published: 01 May 1989
Abstract
The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm embryos. As embryogenesis proceeds, the distribution of spectrin shifts with the migrating nuclei toward the embryo surface so that, by nuclear cycle 9, a larger proportion of the spectrin is concentrated near the plasma membrane. During nuclear cycles 9 and 10, as the nuclei reach the cell surface, the plasma membrane-associated spectrin becomes concentrated into caps above the somatic nuclei. Concurrent with the mitotic events of the syncytial blastoderm period, the spectrin caps elongate at interphase and prophase, and divide as metaphase and anaphase progress. During cellularization, the regions of spectrin concentration appear to shift: spectrin increases near the growing furrow canal and concomitantly increases at the embryo surface. In the final phase of furrow growth, the shift in spectrin concentration is reversed: spectrin decreases near the furrow canal and concomitantly increases at the embryo surface. In gastrulae, spectrin accumulates near the embryo surface, especially at the forming amnioproctodeal invagination and cephalic furrow. During the germband elongation stage, the total amount of spectrin in the embryo increases significantly and becomes uniformly distributed at the plasma membrane of almost all cell types. The highest levels of spectrin are in the respiratory tract cells; the lowest levels are in parts of the forming gut. The spatial and temporal changes in spectrin localization suggest that this protein plays a role in stabilizing rather than initiating changes in structural organization in the embryo.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1987) 105 (5): 2103–2110.
Published: 01 November 1987
Abstract
Drosophila alpha-spectrin cDNA sequences were isolated from a lambda gt11 expression library. These cDNA clones encode fusion proteins that include portions of the Drosophila alpha-spectrin polypeptide as shown by a number of structural and functional criteria. The fusion proteins elicited antibodies that reacted strongly with Drosophila and vertebrate alpha-spectrins and a comparison of cyanogen bromide peptide maps demonstrated a clear structural correspondence between one fusion protein and purified Drosophila alpha-spectrin. Alpha-spectrin fusion protein also displayed calcium-dependent calmodulin-binding activity in blot overlay experiments and one fusion protein bound specifically to both Drosophila and bovine brain beta-spectrin subunits on protein blots. A region of the Drosophila cDNA cross-hybridized at lowered stringency with an avian alpha-spectrin cDNA. Together these data show that the composition, structure, and binding properties of the spectrin family of proteins have been remarkably well conserved between arthropods and vertebrates. Drosophila cDNA hybridized to an mRNA of greater than or equal to 9 kb on blots of total Drosophila poly A+ RNA; and hybridized in situ to a single site in polytene region 62B, 1-7. This result and Southern blot analysis of genomic DNA indicate that the sequences are likely to be single copy in the Drosophila genome.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1987) 105 (5): 2095–2102.
Published: 01 November 1987
Abstract
We purified a protein from Drosophila S3 tissue culture cells that has many of the diagnostic features of spectrin from vertebrate organisms: (a) The protein consists of two equimolar subunits (Mr = 234 and 226 kD) that can be reversibly cross-linked into a complex composed of equal amounts of the two subunits. (b) Electron microscopy of the native molecule reveals two intertwined, elongated strands with a contour length of 180 nm. (c) Antibodies directed against vertebrate spectrin react with the Drosophila protein and, similarly, antibodies to the Drosophila protein react with vertebrate spectrins. One monoclonal antibody has been found to react with both of the Drosophila subunits and with both subunits of vertebrate brain spectrin. (d) The Drosophila protein exhibits both actin-binding and calcium-dependent calmodulin-binding activities. Based on the above criteria, this protein appears to be a bona fide member of the spectrin family of proteins.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (6): 2121–2128.
Published: 01 December 1986
Abstract
We characterized nine monoclonal antibodies that bind to the heavy chain of Acanthamoeba myosin-IA. Eight of these antibodies bind to myosin-IB and eight cross-react with Acanthamoeba myosin-II. All but one of the antibodies bind to a 30-kD chymotryptic peptide of myosin-IA that derives from the COOH terminus of the molecule, and to tryptic peptides as small as 17 kD, hence these epitopes are clustered closely together on the heavy chain. None of the antibodies prevent heavy chain phosphorylation by myosin-I heavy chain kinase. One antibody inhibits the K+-EDTA ATPase activity and three antibodies inhibit the actin-activated Mg++-ATPase activity of myosin-I under the set of conditions that we tested. When fluorescent antibody staining of both whole cells and isolated nuclei is done, several of these monoclonal antibodies react strongly with nuclei. These antibodies also stain the cytoplasmic matrix, especially the cortex near the plasma membrane. All nine of the monoclonal antibodies bind to polypeptides of 30-34 kD that are highly enriched in nuclei isolated from Acanthamoeba. There is no myosin-I in the isolated nuclei, so the 30-34-kD polypeptides, not myosin-I, are responsible for the nuclear staining.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (4): 1517–1525.
Published: 01 October 1986
Abstract
Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (5): 1647–1654.
Published: 01 November 1984
Abstract
Measurements and observations of five early events of fertilization, singly and in pairs, from single sea urchin eggs have revealed the precise temporal sequence and spatial distribution of these events. In the Arbacia punctulata egg, a wave of surface contraction occurs coincident with membrane depolarization (t = 0). These two earliest events are followed by the onset of a rapid, propagated increase in cytoplasmic-free calcium at approximately 23 s as measured by calcium-aequorin luminescence. The luminescence reaches its peak value by 40 s after the membrane depolarization. The luminescence remains uniformly elevated for some time before its decay over several minutes. The onset of an increase in the pyridine nucleotide (NAD(P)H) fluorescence follows the membrane depolarization at approximately 51 s. The fertilization membrane begins its elevation in a wave-like fashion coincidentally with the increase in NAD(P)H fluorescence. Similar results are observed in the Lytechinus variegatus egg. The results suggest that while the increase in cytoplasmic-free calcium may be important for many changes occurring in the egg, the elevated-free calcium is not directly responsible for the propagated wave of cortical granule exocytosis.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (3): 1024–1033.
Published: 01 September 1984
Abstract
Monoclonal and polyclonal antibodies that bind to myosin-II were tested for their ability to inhibit myosin ATPase activity, actomyosin ATPase activity, and contraction of cytoplasmic extracts. Numerous antibodies specifically inhibit the actin activated Mg++-ATPase activity of myosin-II in a dose-dependent fashion, but none blocked the ATPase activity of myosin alone. Control antibodies that do not bind to myosin-II and several specific antibodies that do bind have no effect on the actomyosin-II ATPase activity. In most cases, the saturation of a single antigenic site on the myosin-II heavy chain is sufficient for maximal inhibition of function. Numerous monoclonal antibodies also block the contraction of gelled extracts of Acanthamoeba cytoplasm. No polyclonal antibodies tested inhibited ATPase activity or gel contraction. As expected, most antibodies that block actin-activated ATPase activity also block gel contraction. Exceptions were three antibodies M2.2, -15, and -17, that appear to uncouple the ATPase activity from gel contraction: they block gel contraction without influencing ATPase activity. The mechanisms of inhibition of myosin function depends on the location of the antibody-binding sites. Those inhibitory antibodies that bind to the myosin-II heads presumably block actin binding or essential conformational changes in the myosin heads. A subset of the antibodies that bind to the proximal end of the myosin-II tail inhibit actomyosin-II ATPase activity and gel contraction. Although this part of the molecule is presumably some distance from the ATP and actin-binding sites, these antibody effects suggest that structural domains in this region are directly involved with or coupled to catalysis and energy transduction. A subset of the antibodies that bind to the tip of the myosin-II tail appear to inhibit ATPase activity and contraction through their inhibition of filament formation. They provide strong evidence for a substantial enhancement of the ATPase activity of myosin molecules in filamentous form and suggest that the myosin filaments may be required for cell motility.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (3): 1002–1014.
Published: 01 September 1984
Abstract
We used a library of 31 monoclonal and six polyclonal antibodies to compare the structures of the two classes of cytoplasmic myosin isozymes isolated from Acanthamoeba: myosin-I, a 150,000-mol-wt, globular molecule; and myosin-II, a 400,000-mol-wt molecule with two heads and a 90-nm tail. This analysis confirms that myosin-I and -II are unique gene products and provides the first evidence that these isozymes have at least one structurally homologous region functionally important for myosin's role in contractility. Characterization of the 23 myosin-II monoclonal antibody binding sites by antibody staining of one-dimensional peptide maps and solid phase, competitive binding assays demonstrate that they bind to at least 15 unique sites on the myosin-II heavy chain. The antibodies can be grouped into six families, whose members bind close to one another. None of the monoclonal antibodies bind to myosin-II light chains and polyclonal antibodies against myosin-II light or heavy chain bind only to myosin-II light or heavy chains, respectively: no antibody binds both heavy and light chains. Six of eight monoclonal antibodies and one of two polyclonal sera that react with the myosin-I heavy chain also bind to determinants on the myosin-II heavy chain. The cross-reactive monoclonal antibodies bind to the region of myosin-II recognized by the largest family of myosin-II monoclonal antibodies. In the two papers that immediately follow, we show that this family of monoclonal antibodies to myosin-II binds to the myosin-II tail near the junction with the heads and inhibits both the actin-activated ATPase of myosin-II and contraction of gelled cytoplasmic extracts of Acanthamoeba cytoplasm. Further, this structurally homologous region may play a key role in energy transduction by cytoplasmic myosins.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (3): 1015–1023.
Published: 01 September 1984
Abstract
Electron microscopy of myosin-II molecules and filaments reacted with monoclonal antibodies demonstrates directly where the antibodies bind and shows that certain antibodies can inhibit the polymerization of myosin-II into filaments. The binding sites of seven of 23 different monoclonal antibodies were localized by platinum shadowing of myosin monomer-antibody complexes. The antibodies bind to a variety of sites on the myosin-II molecule, including the heads, the proximal end of the tail near the junction of the heads and tail, and the tip of the tail. The binding sites of eight of the 23 antibodies were also localized on myosin filaments by negative staining. Antibodies that bind to either the myosin heads or to the proximal end of the tail decorate the ends of the bipolar filaments. Some of the antibodies that bind to the tip of the myosin-II tail decorate the bare zone of the myosin-II thin filament with 14-nm periodicity. By combining the data from these electron microscope studies and the peptide mapping and competitive binding studies we have established the binding sites of 16 of 23 monoclonal antibodies. Two of the 23 antibodies block the formation of myosin-II filaments and given sufficient time, disassemble preformed myosin-II filaments. Both antibodies bind near one another at the tip of the myosin-II tail and are those that decorate the bare zone of preformed bipolar filaments with 14-nm periodicity. None of the other antibodies affect myosin filament formation, including one that binds to another site near the tip of the myosin-II tail. This demonstrates that antibodies can inhibit polymerization of myosin-II, but only when they bind to key sites on the tail of the molecule.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1982) 94 (1): 165–178.
Published: 01 July 1982
Abstract
Antibody against cytoplasmic myosin, when microinjected into actively dividing cells, provides a physiological test for the role of actin and myosin in chromosome movement. Anti-Asterias egg myosin, characterized by Mabuchi and Okuno (1977, J. Cell Biol., 74:251), completely and specifically inhibits the actin activated Mg++ -ATPase of myosin in vitro and, when microinjected, inhibits cytokinesis in vivo. Here, we demonstrate that microinjected antibody has no observable effect on the rate or extent of anaphase chromosome movements. Neither central spindle elongation nor chromosomal fiber shortening is affected by doses up to eightfold higher than those require to uniformly inhibit cytokinesis in all injected cells. We calculate that such doses are sufficient to completely inhibit myosin ATPase activity in these cells. Cells injected with buffer alone, with myosin-absorbed antibody, or with nonimmune gamma-globulin, proceed normally through both mitosis and cytokinesis. Control gamma-globulin, labeled with fluorescein, diffuses to homogeneity throughout the cytoplasm in 2-4 min and remains uniformly distributed. Antibody is not excluded from the spindle region. Prometaphase chromosome movements, fertilization, pronuclear migration, and pronuclear fusion are also unaffected by microinjected antimyosin. These experiments demonstrate that antimyosin blocks the actomyosin interaction thought to be responsible for force production in cytokinesis but has no effect on mitotic or meiotic chromosome motion. They provide direct physiological evidence that myosin is not involved in force production for chromosome movement.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1981) 88 (3): 604–617.
Published: 01 March 1981
Abstract
I microinjected calcium ions into echinoderm eggs during mitosis to determine the calcium sensitivity of microtubules (Mts) in vivo. Spindle birefringence (BR), a measure of the number of aligned Mts in the spindle, is locally, rapidly, and reversibly abolished by small volumes of microinjected CaCl2 (1 mM). Rapid return of BR is followed by anaphase, and subsequent divisions are normal. Similar doses of MgCl2, BaCl2, KCl, NaCl, pH buffers, distilled water, or vegetable oil have no effect on spindle BR, whereas large doses of such agents sometimes cause slow, uniform loss in BR over the course of a minute or more. Of the ions tested, only Sr++ causes effects comparable to Ca++. Ca-EGTA buffers, containing greater than micromolar free Ca++, abolishes BR in a manner similar to millimolar concentrations of injected CaCl2. Caffeine, a potent uncoupler of the Ca++-pump/ATPase of sarcoplasmic reticulum, causes a local, transient depression in spindle BR in the injected region. Finally, injection of potassium oxalate results in the formation of small, highly BR crystals, presumably CA-oxalate, in Triton-sensitive compartments in the cytoplasm. Taken together, these findings demonstrate that spindle Mts are sensitive to levels of free Ca++ in the physiological range, provide evidence for the existence of a strong cytoplasmic Ca++-sequestering system, and support the notion that Mt assembly and disassembly in local regions of the spindle may be orchestrated by local changes in the cytoplasmic free Ca++ concentration during mitosis. An appendix offers the design of a new chamber for immobilizing echinoderm eggs for injection, a new method for determining the volume of the injected solution, and a description of the microinjection technique, which was designed, but never fully described, by Hiramoto (Y. Hiramoto, Exp. Cell. Res., 1962, 27:416-426.).