Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-6 of 6
C. J. Arntzen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (3): 733–740.
Published: 01 September 1986
Abstract
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (3): 725–731.
Published: 01 September 1986
Abstract
A plastome (chloroplast genome) mutant of tobacco, lutescens-1, displays abnormal degradation of the chloroplast-encoded polypeptides which form the core complex of photosystem II (PSII). Two nuclear-encoded proteins (present in polymorphic forms), which normally function in the water oxidation process of PSII, accumulate as larger size-class polypeptides in mutant thylakoid membranes. These accumulated proteins are intermediate in size between the full-length primary protein synthesized in the cytoplasm and the proteolytically processed mature polypeptides. Trypsin treatment of unstacked mutant thylakoids and of inside-out vesicle (PSII-enriched) preparations indicated that the intermediate size forms were correctly localized on the inner surface of the thylakoid membrane, but not surface-exposed in the same way as the mature proteins. Only one of the intermediate size-class proteins could be extracted by salt washes. We interpret these data to be consistent with the idea that the two imported proteins that function in the water oxidation step of photosynthesis and are localized in the loculus (the space within the thylakoid vesicles) undergo two-step processing. The second step in proteolytic processing may be related to transport through a second membrane (the first transport step through the chloroplast envelope having been completed); this step may be arrested in the mutant due to the absence of the PSII core complex.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (2): 481–485.
Published: 01 August 1984
Abstract
Incubation of Chlamydomonas reinhardii cells at light levels that are several times more intense than those at which the cells were grown results in a loss of photosystem II function (termed photoinhibition). The loss of activity corresponded to the disappearance from the chloroplast membranes of a lysine-deficient, herbicide-binding protein of 32,000 daltons which is thought to be the apoprotein of the secondary quinone electron acceptor of photosystem II (the QB protein). In vivo recovery from the damage only occurred following de novo synthesis (replacement) of the chloroplast-encoded QB protein. We believe that the turnover of this protein is a normal consequence of its enzymatic function in vivo and is a physiological process that is necessary to maintain the photosynthetic integrity of the thylakoid membrane. Photoinhibition occurs when the rate of inactivation and subsequent removal exceeds the rate of resynthesis of the QB protein.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1983) 97 (5): 1327–1337.
Published: 01 November 1983
Abstract
A chlorophyll-protein complex of chloroplast membranes, which simultaneously serves as light-harvesting antenna and membrane adhesion factor, undergoes reversible, lateral diffusion between appressed and nonappressed membrane regions under the control of a protein kinase. The phosphorylation-dependent migration process regulates the amount of light energy that is delivered to the reaction centers of photosystems I and II (PS I and PS II), and thereby regulates their rate of turnover. This regulatory mechanism provides a rationale for the finding that the two photosystems are physically separated in chloroplast membranes (PS II in appressed, grana membranes, and PS I in nonappressed, stroma membranes). The feedback system involves the following steps: a membrane-bound kinase senses the rate of PS II vs. PS I turnover via the oxidation-reduction state of the plastoquinone pool, which shuttles electrons from PS II via cytochrome f to PS I. If activated, the kinase adds negative charge (phosphate) to a grana-localized pigment-protein complex. The change in its surface charge at a site critical for promoting membrane adhesion results in increased electrostatic repulsion between the membranes, unstacking, the lateral movement of the complex to adjacent stroma membranes, which differ in their functional composition. The general significance of this type of membrane regulatory mechanism is discussed.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1977) 73 (2): 400–418.
Published: 01 May 1977
Abstract
We have previously demonstrated (Armond, P. A., C. J. Arntzen, J.-M. Briantais, and C. Vernotte. 1976. Arch. Biochem. Biophys. 175:54-63; and Davis, D. J., P. A. Armond, E. L. Gross, and C. J. Arntzen. 1976. Arch. Biochem. Biophys. 175:64-70) that pea seedlings which were exposed to intermittent illumination contained incompletely developed chloroplasts. These plastids were photosynthetically competent, but did not contain grana. We now demonstrate that the incompletely developed plastids have a smaller photosynthetic unit size; this is primarily due to the absence of a major light-harvesting pigment-protein complex which is present in the mature membranes. Upon exposure of intermittent-light seedlings to continuous white light for periods up to 48 h, a ligh-harvesting chlorophyll-protein complex was inserted into the chloroplast membrane with a concomitant appearance of grana stacks and an increase in photosynthetic unit size. Plastid membranes from plants grown under intermediate light were examined by freeze-fracture electron microscopy. The membrane particles on both the outer (PF) and inner (EF) leaflets of the thylakoid membrane were found to be randomly distributed. The particle density of the PF fracture face was approx. four times that of the EF fracture face. While only small changes in particle density were observed during the greening process under continuous light, major changes in particle size were noted, particularly in the EF particles of stacked regions (EFs) of the chloroplast membrane. Both the changes in particle size and an observed aggregation of the EF particles into the newly stacked regions of the membrane were correlated with the insertion of light-harvesting pigment-protein into the membrane. Evidence is presented for identification of the EF particles as the morphological equivalent of a "complete" photosystem II complex, consisting of a phosochemically active "core" complex surrounded by discrete aggregates of the light-harvesting pigment protein. A model demonstrating the spatial relationships of photosystem I, photosystem II, and the light-harvesting complex in the chloroplast membrane is presented.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1969) 43 (1): 16–31.
Published: 01 October 1969
Abstract
Spinach chloroplast lamellae were washed free of negatively staining surface particles (carboxydismutase and coupling factor protein) and the resulting smooth-surfaced lamellae still showed the usual large (175 A) and small (110 A) particles seen by freeze-etching. Therefore, the freeze-fracture plane probably occurs along an internal surface of the chloroplast membrane. Fractions obtained by differential centrifugation of digitonin-treated chloroplast membranes were studied by negative staining, thin sectioning, and freeze-etching techniques for electron microscopy. The material sedimenting between 1,000 g and 10,000 g, enriched in photosystem II activity, was shown to consist of membrane fragments. These freeze-etched membrane fragments were found to have large particles on most of the exposed fracture faces. The large particles had the same size and distribution pattern as the 175 A particles seen in intact chloroplast membranes. The material sedimenting between 50,000 g and 144,000 g, which had only photosystem I activity, was found to consist of particles in various degrees of aggregation. Freeze-etching of this fraction revealed only small particles corresponding to the 110 A particles seen in intact chloroplasts. A model is presented suggesting that chloroplast lamellar membranes have a binary structure, which digitonin splits into two components. The two membrane fragments have different structures, revealed by freeze-etching, and different photochemical and biochemical functions.