Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
C S Johnson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 107 (6): 2213–2221.
Published: 01 December 1988
Abstract
Purified skeletal muscle myosin was labeled with iodoacetamidofluorescein and microinjected into cultured chick myotubes. The fluorescent myosin analogue became incorporated within 10-15 min after injection, into either periodic (mean periodicity = 2.23 +/- 0.02 micron) bands or apparently continuous fibrillar structures. Comparison of rhodamine-labeled alpha-actinin with coinjected fluorescein-labeled myosin suggested that myosin fluorescence was localized at the A-bands of myofibrils. In addition, close examination of the fluorescent myosin bands indicated that they were composed of two fluorescent bars separated by a nonfluorescent line that corresponded to the H-zone. Once incorporated, the myosin underwent a relatively slow exchange along myofibrils as indicated by fluorescence recovery after photobleaching. Glycerinated myofibrils were able to bind fluorescent myosin in a similar pattern in the presence or absence of MgATP, indicating that actin-myosin interactions had little effect on this process. Fluorescent heavy meromyosin did not incorporate into myofibrillar structures after injection. Light meromyosin, however, associated with A-bands as did whole myosin. These results suggest that microinjected myosin, even with its relatively low solubility under the cytoplasmic ionic condition, is capable of association with physiological structures in living muscle cells. Additionally, the light meromyosin portion of the molecule appears to be mainly responsible for the incorporation.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (6): 2163–2171.
Published: 01 December 1986
Abstract
We have used fluorescence analogue cytochemistry in conjunction with time lapse recording to study the dynamics of alpha-actinin, a major component of the Z line, during myofibrillogenesis. Rhodamine-labeled alpha-actinin microinjected into living cultured chick skeletal myotubes became localized in discrete cellular structures within 1 h and remained specifically associated with structures for up to 4 d, allowing individual identified structures to be followed during development. In the most immature cells used, alpha-actinin was found in diffuse aggregates, some of which displayed sarcomeric periodicity. Aggregates were observed to coalesce into better defined structures (Z bands) that were approximately 1.0-micron wide. Z bands condensed into narrow, more intensely fluorescent Z lines in 4-48 h. During this period, Z lines grew laterally, primarily by the addition of small beads of alpha-actinin to existing Z lines or by the merging of small Z lines. In more mature cells, alpha-actinin added to Z lines without going through a visible intermediary structure. Mean sarcomere length did not change significantly during the stages examined, although the variability of sarcomere length did decrease markedly over time for identified sets of sarcomeres. At early stages, myofibrils frequently shifted position in both the longitudinal and lateral directions. Neighboring myofibrils were frequently associated for one or more sarcomeres sporadically along their length, such that the intervening sarcomeres were often misaligned. Associations between myofibrils were often transitory. Shifts in myofibril location in conjunction with the formation, breaking, and reformation of lateral associations between myofibrils facilitated the alignment of Z lines through a trial and error process.