Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-7 of 7
A Sonnenberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 129 (1): 255–265.
Published: 01 April 1995
Abstract
Episialin (MUC1) is a transmembrane molecule with a large mucin-like extracellular domain protruding high above the cell surface. The molecule is located at the apical side of most glandular epithelial cells, whereas in carcinoma cells it is often present at the entire surface and it is frequently expressed in abnormally large quantities. We have previously shown that overexpression of episialin reduces cell-cell interactions. Here we show that the integrin-mediated adhesion to extracellular matrix of transfectants of a melanoma cell line (A375), a transformed epithelial cell line (MDCK-ras-e) and a human breast epithelial cell line (HBL-100) is reduced by high levels of episialin. This reduction can be reversed by inducing high avidity of the beta 1 integrins by mAb TS2/16 (at least for beta 1-mediated adhesion). The adhesion can also be restored by redistribution of episialin on the cell surface by monoclonal antibodies into patches or caps. Similarly, capping of episialin on ZR-75-1 breast carcinoma cells, growing in suspension, caused adherence and spreading of these cells. We propose that there is a delicate balance between adhesion and anti-adhesion forces in episialin expressing cells, which can be shifted towards adhesion by strengthening the integrin-mediated adhesion, or towards anti-adhesion by increasing the level of expression of episialin.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 127 (6): 2071–2080.
Published: 15 December 1994
Abstract
TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes. However, despite high cell surface levels of alpha 6 beta 4, TA3/Ha cells do not adhere to the alpha 6 beta 4 ligands laminin and kalinin. Here we show that this is due to the mucin epiglycanin that is highly expressed on TA3/Ha cells. Some monoclonal antibodies generated against epiglycanin induced capping of most of the epiglycanin molecules. TA3/Ha cells treated with these mAb did adhere to laminin and kalinin, and an epithelial monolayer was formed on kalinin, with alpha 6 beta 4 localized in HD1-containing hemidesmosome-like structures and E-cadherin at the cell-cell contact sites. Similar results were obtained after treatment of TA3/Ha cells with O-sialoglycoprotein endopeptidase which removes all epiglycanin. In addition, the enzyme induced E-cadherin-mediated cell-cell aggregation. Both treatments also enhanced the adhesion to hepatocytes, but given the potent antiadhesive effect of epiglycanin it is remarkable that nontreated TA3/Ha cells adhere to hepatocytes at all. We found that during this interaction, epiglycanin was redistributed. We conclude that epiglycanin can completely prevent both intercellular and matrix adhesion, but that this effect can be overcome in certain intercellular interactions because of the induced redistribution of the mucin.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 121 (1): 179–191.
Published: 01 April 1993
Abstract
Two cytoplasmic variants of the alpha 6 integrin, alpha 6A and alpha 6B, have been identified previously (Hogervorst, F., I. Kuikman, A. G. van Kessel, and A. Sonnenberg. 1991. Eur. J. Biochem. 199:425-433; Cooper, H. M., R. N. Tamura, and V. Quaranta. 1991. J. Cell Biol. 115:843-850). Using synthetic peptides, containing sequences of their cytoplasmic domains, we have produced mAbs specific for either of the variants. These antibodies reacted with a variety of different epithelial tissues. In some tissues (e.g., salivary gland) both variants could be detected while in others only one of the variants was found (e.g., alpha 6A in epidermis and alpha 6B in kidney). Among nonepithelial cells and tissues, perineural fibroblasts and Schwann cells in peripheral nerves and platelets reacted with anti-alpha 6A, while microvascular endothelia reacted with both anti-alpha 6A and anti-alpha 6B. From our immunohistochemical results there is not evidence that combination with beta 1 or beta 4 is restricted to one of the two variants of alpha 6. This was confirmed by immunoprecipitation studies which showed that both beta 1 and beta 4 were coprecipitated by both anti-alpha 6A or anti-alpha 6B antibodies from cells. Also, the distribution of alpha 6A and alpha 6B subunits associated with beta 1 on cells attached to laminin was similar: both were found in focal contacts colocalizing with vinculin. In contrast, the alpha 6A subunit, associated with beta 4 in cultures of a squamous cell carcinoma cell line, was found to codistribute with bullous pemphigoid antigen 230 in hemidesmosomal-like structures. The alpha 6A and alpha 6B variants, immunoprecipitated from various cell lines, exhibited slightly different electrophoretic mobilities. Analysis of the antigens under reducing conditions showed that the mobility of the light chains, but not of the heavy chains, is different. In addition, in some cells the light chains of alpha 6A and alpha 6B, each are of two different sizes. Treatment with N-glycanase showed that these two light chain variants of alpha 6A and alpha 6B are not due to differences in N-linked glycosylation, and may therefore represent alternative proteolytic products of the alpha 6 precursor. We further demonstrate that alpha 6A, but not alpha 6B, is a major target for PMA-induced phosphorylation. Phosphorylated alpha 6A contained phosphoserine and a small amount of phosphotyrosine. There are also two variants of the integrin alpha 3 subunit with different cytoplasmic domains, but in the cell lines examined only alpha 3A could be demonstrated by RT-PCR.(ABSTRACT TRUNCATED AT 400 WORDS)
Journal Articles
A Sonnenberg, J Calafat, H Janssen, H Daams, L M van der Raaij-Helmer, R Falcioni, S J Kennel, J D Aplin, J Baker, M Loizidou
Journal:
Journal of Cell Biology
Journal of Cell Biology (1991) 113 (4): 907–917.
Published: 15 May 1991
Abstract
The alpha 6/beta 4 complex is a member of the integrin family of adhesion receptors. It is found on a variety of epithelial cell types, but is most strongly expressed on stratified squamous epithelia. Fluorescent antibody staining of human epidermis suggests that the beta 4 subunit is strongly localized to the basal region showing a similar distribution to that of the 230-kD bullous pemphigoid antigen. The alpha 6 subunit is also strongly localized to the basal region but in addition is present over the entire surfaces of basal cells and some cells in the immediate suprabasal region. By contrast staining for beta 1, alpha 2, and alpha 3 subunits was very weak basally, but strong on all other surfaces of basal epidermal cells. These results suggest that different integrin complexes play differing roles in cell-cell and cell-matrix adhesion in the epidermis. Immunoelectron microscopy showed that the alpha 6/beta 4 complex at the basal epidermal surface is strongly localized to hemidesmosomes. This result provides the first well-characterized monoclonal antibody markers for hemidesmosomes and suggests that the alpha 6/beta 4 complex plays a major role in epidermal cell-basement membrane adhesion. We suggest that the cytoplasmic domains of these transmembrane glycoproteins may contribute to the structure of hemidesmosomal plaques. Immunoultrastructural localization of the BP antigen suggests that it may be involved in bridging between hemidesmosomal plaques and keratin intermediate filaments of the cytoskeleton.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (3): 1265–1273.
Published: 01 September 1990
Abstract
It has been previously shown that A-chain and domain(E8)-specific antibodies to laminin that inhibit cell adhesion also interfere with the establishment of epithelial cell polarity during kidney tubule development (Klein, G., M. Langegger, R. Timpl, and P. Ekblom. 1988. Cell. 55:331-341). A monoclonal antibody specific for the integrin alpha 6 subunit, which selectively blocks cell binding to E8, was used to study the receptors involved. Immunofluorescence staining of embryonic kidneys and of organ cultures of metanephric mesenchyme demonstrated coappearance of the integrin alpha 6 subunit and the laminin A-chain in regions where nonpolarized mesenchymal cells convert into polarized epithelial cells. Both epitopes showed marked colocalization in basal areas of tubules, while an exclusive immunostaining for alpha 6 was observed in lateral and apical cell surfaces of the tubular epithelial cells. Organ culture studies demonstrated a consistent inhibition of kidney epithelium development by antibodies against the alpha 6 subunit. The data suggest that the recognition of E8 cell-binding site of laminin by a specific integrin is crucial for the formation of kidney tubule epithelium from undifferentiated mesenchymal stem cells. In some other cell types (endothelium, some ureter cells) an exclusive expression of alpha 6 with no apparent colocalization of laminin A-chain in the corresponding basement membrane was seen. Thus, in these cells, integrins possessing the alpha 6 subunit may bind to laminin isoforms that differ from those synthesized by developing tubules.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 110 (6): 2175–2184.
Published: 01 June 1990
Abstract
This study was undertaken to determine the roles of individual alpha/beta 1 integrin heterodimers in promoting cellular interactions with the different attachment-promoting domains of laminin (LN). To do this, antibodies to the integrin beta 1 subunit or to specific integrin alpha subunits were tested for effects on cell attachment to LN, to elastase fragments E1-4 and E1, derived from the short arms and core of LN's cruciform structure, and to fragment E8 derived from the long arm of this structure. The human JAR choriocarcinoma cells used in this study attached to LN and to fragments E1 and E8. Attachment to E1-4 required a much higher substrate coating concentration, suggesting that it is a poor substrate for JAR cell attachment. The ability of cells to attach to different LN domains suggested the presence of more than one LN receptor. These multiple LN receptors were shown to be beta 1 integrin heterodimers because antibodies to the integrin beta 1 subunit inhibited attachment of JAR cells to LN and its three fragments. To identify the individual integrin alpha/beta 1 heterodimers that mediate interactions with these LN domains, mAbs specific for individual beta 1 heterodimers in human cells were used to study JAR cell interactions with LN and its fragments. An anti-alpha 6/beta 1-specific mAb, GoH3, virtually eliminated cell attachment to E8 and partially inhibited attachment to E1 and intact LN. Thus the major alpha 6/beta 1 attachment domain is present in fragment E8. An alpha 1/beta 1-specific mAb (S2G3) strongly inhibited cell attachment to collagen IV and partially inhibited JAR attachment to LN fragment E1. Thus, the alpha 1/beta 1 heterodimer is a dual receptor for collagen IV and LN, interacting with LN at a site in fragment E1. In combination, the anti-alpha 1- and anti-alpha 6-specific antibodies completely inhibited JAR cell attachment to LN and fragment E1. Thus, the alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers each function as LN receptors and act together to mediate the interactions of human JAR choriocarcinoma cells with LN.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 110 (6): 2145–2155.
Published: 01 June 1990
Abstract
The involvement of integrins in mediating interaction of cells to well-characterized proteolytic fragments (P1, E3, and E8) of laminin was assessed by antibody blocking studies. Cell adhesion to fragment P1 was affected by mAbs against the integrin beta 1 and beta 3 subunits and furthermore could be prevented completely by a synthetic peptide containing the Arg-Gly-Asp sequence. Because the beta 3 antibody-sensitive cell lines expressed the vitronectin receptor (alpha v beta 3) at high levels, the involvement of this receptor in cell adhesion to P1 is strongly suggested. Integrin-mediated cell adhesion to E3 is of low affinity and was inhibited by antibodies against the integrin beta 1 subunit. In contrast, adhesion of some cell types to E3 was not or only partially sensitive to inhibition by anti-integrin subunit antibodies. Cell adhesion to E8 was blocked completed by integrin alpha 6 or beta 1 antibodies. The alpha 6-specific antibody did not inhibit cell adhesion to E3 or P1. Furthermore, the antibody only blocked adhesion to laminin of those cells that adhered exclusively to the E8 fragment. In addition, expression of alpha 6 beta 1 was closely correlated with the ability of cells to bind to the E8 fragment of laminin. These results indicate that the alpha 6 beta 1 integrin is a specific receptor for the E8 fragment of laminin. Many cell types expressed, instead of or in addition to alpha 6 beta 1 the recently described integrin alpha 6 beta 4. Although the ligand of alpha 6 beta 4 was not identified, it must be different from that of alpha 6 beta 1, because cells that express alpha 6 beta 4, but not alpha 6 beta 1, do not adhere to E8, and cell adhesion to E8 was specifically blocked by beta 1 specific antibodies. In conclusion, the data indicate that distinct integrin receptors belonging to the beta 1 or beta 3 subfamily are involved in adhesion of cells to the various laminin fragments. Adhesion to E3 may also be brought about by other receptor molecules, possibly proteoglycans, not belonging to the integrin family.