Skip to Main Content


Skip Nav Destination


In This Issue

In Focus

Study reveals how the AAA-ATPase Vps4 helps the ESCRT-III complex form multivesicular bodies.

People & Ideas

Freeman studies the functions and roles of rhomboid superfamily proteins.


Quality control


Ca2+–Calmodulin binding to neuronal v-ATPase V0 subunit a1 (V100) regulates SNARE complex assembly for a putative subset of synaptic vesicles that sustain spontaneous release in Drosophila.


Vps4 both recycles ESCRT-III subunits and cooperates with ESCRT-III to drive distinct membrane remodeling steps that lead to efficient membrane scission during the biogenesis of multivesicular bodies.

Signal peptide binding modulates assembly of chloroplast Tha4 onto the twin-arginine translocase cpTatC subunit to assemble a functional protein-conducting pore.

The axon initial segment of differentiated neurons contains a dense submembranous cytoskeleton that overlays microtubule bundles and includes two sparse actin populations: short, stable actin filaments and longer, dynamic non-oriented filaments.

A contractile actomyosin meshwork at the top of a cell is mechanically coupled to dorsal actin fibers that are anchored via focal adhesions to the cell surface, generating a counterbalanced adhesion/contraction system that drives cell shape changes.

In addition to stimulating skeletal muscle growth and repair, Wnt7a/Fzd7 signaling increases the polarity and directional migration of myogenic progenitors and improves the efficacy of muscle stem cell therapy.


Characterization of a new biosensor for PtdIns4P reveals a wider cellular distribution for the polyphosphoinositide than the Golgi localization reported previously, including pools in both the plasma membrane and late endosomes/lysosomes.

Close Modal

or Create an Account

Close Modal
Close Modal