We used a library of 31 monoclonal and six polyclonal antibodies to compare the structures of the two classes of cytoplasmic myosin isozymes isolated from Acanthamoeba: myosin-I, a 150,000-mol-wt, globular molecule; and myosin-II, a 400,000-mol-wt molecule with two heads and a 90-nm tail. This analysis confirms that myosin-I and -II are unique gene products and provides the first evidence that these isozymes have at least one structurally homologous region functionally important for myosin's role in contractility. Characterization of the 23 myosin-II monoclonal antibody binding sites by antibody staining of one-dimensional peptide maps and solid phase, competitive binding assays demonstrate that they bind to at least 15 unique sites on the myosin-II heavy chain. The antibodies can be grouped into six families, whose members bind close to one another. None of the monoclonal antibodies bind to myosin-II light chains and polyclonal antibodies against myosin-II light or heavy chain bind only to myosin-II light or heavy chains, respectively: no antibody binds both heavy and light chains. Six of eight monoclonal antibodies and one of two polyclonal sera that react with the myosin-I heavy chain also bind to determinants on the myosin-II heavy chain. The cross-reactive monoclonal antibodies bind to the region of myosin-II recognized by the largest family of myosin-II monoclonal antibodies. In the two papers that immediately follow, we show that this family of monoclonal antibodies to myosin-II binds to the myosin-II tail near the junction with the heads and inhibits both the actin-activated ATPase of myosin-II and contraction of gelled cytoplasmic extracts of Acanthamoeba cytoplasm. Further, this structurally homologous region may play a key role in energy transduction by cytoplasmic myosins.

This content is only available as a PDF.