We examined the nucleated polymerization of actin from the two ends of filaments that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. Three different in vitro preparations were used to nucleate the polymerization of muscle G-actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate filament growth from both ends with a strong bias for one end. Here we identify the barbed end of the core fragment as the fast growing end by decoration with myosin subfragment one. Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the barbed but not the pointed end of MV core fragments. To examine actin assembly from the naturally occurring, membrane-associated ends of MV core filaments, isolated membrane-intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 mM KCl, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G-actin induced the formation of 0.2-0.4 micron "growth zones" at the tips of microvilli. The dense plaque at the tip of the MV core remains associated with the membrane and the presumed growing ends of the filaments. We also observed filament growth from the pointed ends of core filaments in the terminal web. We did not observe filament growth at the membrane-associated ends of core filaments when the latter were in the presence of 2 microM CB or if the low ionic strength incubation step was omitted. Addition of G-actin to demembranated brush borders, which retain the dense plaque on their MV tips, resulted in filament growth from both ends of the MV core. Again, 2 microM CB blocked filament growth from only the barbed (tip) end of the core. The dense plaque remained associated with the tip-end of the core in the presence of CB but usually was dislodged in control preparations where nucleated polymerization from the tip-end of the core occurred. Our results support the notion that microvillar assembly and changes in microvillar length could occur by actin monomer addition/loss at the barbed, membrane-associated ends of MV core filaments.

This content is only available as a PDF.