Cytostructural changes during fibroblast spreading and translocation and during the transition between the two states have been studied in living cells and in the same cells after fixation and immunofluorescent staining. In time-lapse sequences we observe that birefringent arcs, sometimes circles, concentric with the cell perimeter, form near the periphery of a spreading cell, or that arcs form near the leading edge of a locomoting cell. The arcs move toward the nucleus, where they disappear. In spreading cells, radial stress fibers extend from the region of the cell nucleus to the periphery. The arcs or circles and the stress fibers are visualized in the same cells after fixation and staining with fluorescein-conjugated antiactin antibodies. Stained images of spreading cells show the arcs and stress fibers in the same plane of focus. At points of intersection with arcs, stress fibers are bent toward the substrate on which the cell is moving. During a transitional stage between spreading and translocation the cytostructure undergoes reproducible changes. Arcs and circle cease to form. The radial stress fibers elongate, spiral around the nucleus, and move to the periphery as a band of filaments. We interpret the moving arcs as condensations of a microfilament network that move toward the nucleus as compression waves. As elements of the net are brought close together by the compression wave, contraction may occur and facilitate the condensations.

This content is only available as a PDF.