Lectins conjugated with either peroxidase or ferritin were used to detect specific monosaccharide residues on the luminal front of he fenestrated endothelium in the capillaries of murine pancreas and intestinal mucosa. The lectins tested recognize, if accessible, the following residues: alpha-N-acetylgalactosaminyl (soybean lectin), beta-D-galactosyl (peanut agglutinin [PA] and Ricinus communis agglutinin-120 [RCA]), beta-N-acetylglucosaminyl and sialyl residues (wheat germ agglutinin [WGA]), alpha-L-fucosyl (lotus tetragonolobus lectin), and alpha-D-glucosyl and beta-D-mannosyl (concanavalin A [ConA]). Thi labeled lectins were introduced by perfusion in situ after thoroughly flushing with phosphate-buffered saline the microvascular beds under investigation. Specimens were fixed by perfusion, and subsequently processed for peroxidase detection and electron microscopy. Control experiments included perfusion with: (a) unlabeled lectin before lectin conjugate; (b) labeled lectin together with the cognate hapten sugar, and (c) horseradish peroxidase or ferritin alone. Binding sites were found to be relatively homogeneously distributed on the plasmalemma proper, except for Lotus tetragonolobus lectin and Con A, which frequently bound in patches. Plasmalemmal vesicles, transendothelial channels, and their associated diaphragms were particularly rich in residues recognized by RCA and PA (beta-D-galactosyl residues) and by WGA (beta-N-acetylglucosaminyl residues). Receptors for all lectins tested appeared to be absent or considerably less concentrated on fenestral diaphragms. The results reported here extend and complement previous findings on the existence of microdomains generated by the preferential distribution of chemically different anionic sites (Simionescu et al., 1981, J. Cell Biol., 9:605-613 and 614-621).

This content is only available as a PDF.