The ultrastructural organization of yeast chromatin was examined in Miller spread preparations of samples prepared from spheroplasts or isolated nuclei of Saccharomyces cerevisiae. Micrographs from preparations dispersed in 1 mM Tris (pH 7.2) illustrate that the basic chromatin fiber in yeast exists in two ultrastructurally distinct conformations. The majority (up to 95%) of the chromatin displays a beaded nucleosomal organization, although adjacent nucleosomes are separated by internucleosomal linkers of variable lengths. Ribonucleoprotein (RNP) fibrils are only occasionally associated with chromatin displaying the conformation. The remaining 5-10% of the chromatin appears to be devoid of discrete nucleosomes and has a smooth contour with a fiber diameter of 30-40 A. Transcriptional units, including putative ribosomal precursor RNA genes, defined by the presence of nascent RNP fibrils are restricted to chromatin displaying this smooth morphology. Chromatin released from nuclei in the presence of 5 mM Mg++ displays higher-order chromatin fibers, 200-300 A in diameter, these fibers appear to be arranged in a manner than reflects the two forms of the basic chromatin fiber.

This content is only available as a PDF.