We studied the in situ reconstitution of myosin filaments within the myosin-extracted myofibrils in cultured chick embryo skeletal muscle cells using the electron microscope and polarization microscope. Myosin was first extracted from the myofibrils in glycerinated muscle cells with a high-salt solution containing 0.6 M KCl. When rabbit skeletal muscle myosin was added to the myosin-extracted cells in the high-salt solution, thin filaments in the ghost myofibrils were bound with myosin to form arrowhead complexes. Subsequent dilution of KCl in the myosin solution to 0.1 M resulted in the formation of thick myosin filaments within the myofibrils, increasing the birefringence of the myofibrils. When Mg-ATP was added such myosin-reassembled myofibrils were induced either to form supercontraction bands or to restore the sarcomeric arrangement of thick and thin filaments. Under the polarization microscope, vibrational movement of the myofibrils was seen transiently upon addition of Mg-ATP, often resulting in a regular arrangement of myofibrils in register. These myofibrils, with reconstituted myosin filaments, structurally and functionally resembled the native myofibrils. The findings are discussed with special reference to the myofibril formation in developing muscle cells.

This content is only available as a PDF.