The cytoplasmic bridge system that links all cells of a Volvox embryo and plays a crucial role in morphogenesis is shown to form as a result of localized incomplete cytokinesis; sometimes bridge formation occurs before other regions of the cell have begun to divide. Vesicles, believed to be derived from the cell interior, align along the presumptive cleavage furrow in the bridge-forming region. Apparently it is where these vesicles fail to fuse that bridges are formed. Conventional and high voltage transmission electron microscopy analyses confirm that bridges are regularly spaced; they possess a constant, highly ordered structure throughout cleavage and inversion. Concentric cortical striations (similar to those observed previously in related species) ring each bridge throughout its length and continue out under the plasmalemma of the cell body to abut the striations of neighboring bridges. These striations are closely associated with an electron-dense material that coats the inner face of the membrane throughout the bridge region and appears to be thickest near the equator of each bridge. In addition to the parallel longitudinal arrays of cortical microtubules that traverse the cells, we observed microtubules that angle into and through the bridges during cleavage; however, the latter are not seen once inversion movements have begun. During inversion, bridge bands undergo relocation relative to the cell bodies without any loss of integrity or change in bridge spacing. Observation of isolated cell clusters reveals that it is the sequential movement of individual cells with respect to a stationary bridge system, and not actual movement of the bridges, that gives rise to the observed relocation.

This content is only available as a PDF.