Several species of blue-green algae were studied in thin sections with the electron microscope. Our electron micrographs confirm the view that the cell of blue-green algae is different and simpler in organization than the typical plant or animal cell. On the other hand, the general pattern of ultrastructure is the same as that found in bacteria and Streptomyces. The cell boundary is formed by a double membrane which consists of two typical unit membranes. Situated in between these membranes is the dense inner investment or wall which continues uninterrupted into the cross-walls. The cells always contain photosynthetic lamellae, nucleoplasm with DNA, small granules resembling ribosomes, and often also a number of larger granules of various sorts. The photosynthetic membranes either form the boundary of vesicles or flattened sacs, or, when the lumen of the vesicles disappears and the vesicular surfaces of the membranes zip together, they appear as lamellae made of two closely applied unit membranes. These vesicles or lamellae are disposed irregularly through the cell or arranged in parallel stacks of two or more. A thin layer of cytoplasm always separates the lamellae. The nucleoplasm is composed of masses of fine fibrils about 25 A thick and is either dispersed through the cell or concentrated in polymorphous reticular structures near the center of the cell. The improved resolution of the electron microscope makes it obvious that the terms "chromatoplasm" and "centroplasm" commonly used in the description of blue-green algae are really misleading. There are not different kinds of cytoplasm, but the cell consists of various structural (and functional) units like the ones mentioned above, which are arranged in the cell in a number of ways characteristic for each species or for different physiological or developmental states.

This content is only available as a PDF.