Well-defined ferritin-conjugated lectins were used to map glycoconjugates on the surface of sprouting neurons from rat superior cervical ganglion (SCG) and spinal cord (SC). The cultured neurons were exposed to the markers and processed for electron microscopy, and the number of ferritin particles per unit area of plasmalemma was measured in three different regions: perikaryon, neuritic shaft, and growth cone. Three different binding patterns are observed for different lectin: equal receptor density throughout the plasmalemma of the growing neuron (e.g., Ricinus communis agglutinin I in SCG neurons), gradual decrease (e.g., wheat-germ agglutinin in SCG and SC neurons) and gradual increase (e.g., Ricinus communis agglutinin II in SC neurons) in the density of lectin receptors as one moves from the perikaryon to the growth cone. Furthermore, lectin receptor densities differ in the two types of neurons analyzed. We can conclude that the plasmalemma of the growth cone has biochemical properties different from those of the perikaryon, and that the neuron's structural polarity is expressed in its surface glycoconjugates. This phenomenon may be related to the growth cone's special functional properties and to the process of expansion of the plasma membrane.

This content is only available as a PDF.