A mouse cell line (LM), which grows predominantly as spindle-shaped cells with numerous filopodia, was employed in this study. These filopodial projections appear to be important as sites of attachment to the substratum in LM cells. Morphologically the filopodia are slender projections from the cell body which usually attach to the substrate at their distal ends (filopodial footpads). Freeze-fracture of monolayer cultures in situ preserves the spatial relationship of filopodial processes to that of the cell body. Examination of these freeze-fracture preparations reveals a striking difference in the density of intramembrane particles (IMP) in the filopodial-footpad plasmalemma compared with the plasmalemma of the cell body (number of IMP in footpad > cell body). Additionally, there is a marked difference in the number of filipin-sterol complexes on the cell body, compared with the filopodial footpad, implying a difference in the cholesterol content in these regions (filipin-sterol complexes in footpad < cell body). These data suggest a structural and functional specialization of the filopodial-footpad plasma membrane which may be related to cell adhesion.

This content is only available as a PDF.