Actin-binding protein (ABP) and myosin are proteins that influence the rigidity and movement, respectively, of actin filaments in vitro. We examined the distribution of ABP and myosin molecules in acetone-fixed rabbit lung macrophages by means of immunofluorescence. The staining for both of these proteins in unspread cells was quite uniform, but was reduced in the nucleus and concentrated slightly in the periphery. The peripheral accumulation of staining attenuated in uniformly spread cells, although filopodia and hyaline veils definitely stained. In cells fixed during ingestion of yeast particles, the brightest staining correlated with the disposition of organelle-excluding pseudopodia initially surrounding the yeast. After phagocytosis was complete and the yeasts resided in intracellular vacuoles, no concentration of staining around the ingested yeasts was detectable. We conclude that ABP and myosin molecules are components of the structural unit of the cell responsible for spreading and phagocytosis, the hyaline cortex, a region known to be rich in actin filaments. The findings are consistent with the theory that these molecules control the rigidity and movement of filaments in the periphery of the living macrophage.

This content is only available as a PDF.