The physiology of protein intracellular transport and secretion by cell types thought to be free from short-term control has been compared with that of the pancreatic acinar cell, using pulse-chase protocols to follow biosynthetically-labeled secretory products. Data previously obtained (Tartakoff, A.M., and P. Vassalli. J. Exp. Med. 146:1332-1345) has shown that plasma-cell immunoglobulin (Ig) secretion is inhibited by respiratory inhibitors, by partial Na/K equilibration effected by the carboxylic ionophore monensin, and by calcium withdrawal effected by the carboxylic ionophore A 23187 in the presence of ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and absence of calcium. We report here that both inhibition of respiration and treatment with monensin slow secretion by fibroblasts, and also macrophages and slow intracellular transport (though not discharge per se) by the exocrine pancreatic cells. Attempted calcium withdrawal is inhibitory for fibroblasts but not for macrophages. The elimination of extracellular calcium or addition of 50 mM KCl has no major effect on secretory rate of either fibroblasts or macrophages. Electron microscopic examination of all cell types shows that monensin causes a rapid and impressive dilation of Golgi elements. Combined cell fractionation and autoradiographic studies of the pancreas show that the effect of monensin is exerted at the point of the exit of secretory protein from the Golgi apparatus. Other steps in intracellular transport proceed at normal rates. These observations suggest a common effect of the cytoplasmic Na/K balance at the Golgi level and lead to a model of intracellular transport in which secretory product obligatorily passes through Golgi elements (cisternae?) that are sensitive to monensin. Thus, intracellular transport follows a similar course in both regulated and nonregulated secretory cells up to the level of distal Golgi elements.

This content is only available as a PDF.