Flagellar outer doublet microtubules were solubilized by use of sonication, and the tubulin was reassembled in vitro into single microtubules containing 14 and 15 protofilaments. The tubulin assembly was dependent on both the KCl and tubulin concentrations, exhibiting a critical concentration of 0.72 mg/ml at optimum solvent conditions. Flagellar tubulin was purified by cycles of temperature-dependent assembly-disassembly and molecular sieve chromatography, and characterized by two-dimensional gel electrophoresis. Although doublet microtubules were not formed in vitro, outer doublet tubulin assembled onto intact A- and B-subfibers of outer doublet microtubules and basal bodies of Chlamydomonas; the rate of assembly from the distal ends of these structures was greater than that from the proximal ends. Microtubule-associated proteins (MAPs) from mammalian brain stimulated outer doublet tubulin assembly, decorating the microtubules with fine filamentous projections.

This content is only available as a PDF.