Serial sectioning was used to track the position and measure the lengths of cortical microtubules in glutaraldehyde-osmium tetroxide-fixed root tip cells. Microtubules lying against the longitudinal walls during interphase, those overlying developing xylem thickenings, and those in pre-prophase bands are oriented circumferentially but on average are only about one-eighth of the cell circumference in length, i.e., 2-4 micrometer. The arrays consist of overlapping component microtubules, interconnected by cross bridges where they are grouped and also connected to the plasma membrane. Microtubule lengths vary greatly in any given array, but the probability that any pass right around the cell is extremely low. The majority of the microtubule terminations lie in statistically random positions in the arrays, but nonrandomness in the form of groups of terminations and terminations in short lines parallel to the axis of cell elongation has been observed. Low temperature induces microtubule shortening and increases the frequency of C-shaped terminations over the 1.7% found under normal conditions; colchicine and high pressures produce abnormally large proportions of very short microtubules amongst those that survive the treatments. Deuterium oxide (D2O) treatment probably induces the formation of additional microtubules as distinct from increasing the length of those already present. The distribution of C-shaped terminations provides evidence for at least local polarity in the arrays. The validity of the findings is discussed, along with implications for the development, maintenance, and orientation of the arrays and their possible relationship to the orientation of cellulose deposition.

This content is only available as a PDF.