A new method has been developed for isolating synaptic junctional complexes (SJC) of high structural integrity. The major step in the isolation involves homogenization of a synaptosomal membrane (SM) fraction in a biphasic system consisting of Freon 113 and an aqueous phase containing 0.2% Triton X-100. Well-preserved SJCs, along with membrane vesicles, were recovered in the aqueous phase after low-speed centrifugation of the homogenate. The membranes were subsequently separated from the SJCs by centrifugation on a discontinuous sucrose density gradient. The purity and identity of subcellular fractions were monitored by thin sectioning electron microscopy, using specific and nonspecific staining methods. From the electron microscope studies we conclude that SJCs and their components occupy about 65% of the area covered by structures in this fraction. The assay of enzyme activities indicates that homogenization in Triton-Freon and subsequent steps of the isolation procedure affect the activities of Na, K-ATPase, cytochrome oxidase, and acid phosphatase to different extents, but do not cause total inactivation. Electrophoresis of the SJC-enriched fraction on sodium dodecyl sulfate-polyacrylamide gels has demonstrated that a polypeptide which co-migrates with tubulin is the major component in this fraction, and that a polypeptide co-migrating with actin is also present.

This content is only available as a PDF.