Vero cells productively infected with the Halle strain of measles virus have been studied by means of surface replication, freeze-fracturing, and surface labeling with horseradish peroxidase-measles antibody conjugate in order to examine changes in the structure of the cell membrane during viral maturation. Early in infection, the surfaces of infected cells are embossed by scattered groups of twisted strands, and diffuse patches of label for viral antigens cover regions marked by these strands. At later stages, when numerous nucleocapsids become aligned under the plasmalemmal strands, the strands increase in number and width and become more convoluted. At this stage, label for viral antigens on the surface of the cell membrane is organized into stripes lying on the crests of strands. Finally, regions of the membrane displaying twisted strands protrude to form ridges or bulges, and the freeze-fractured membrane surrounding these protrusions is characterized by an abundance of particles small than those found on the rest of the cell membrane. The fractured membranes of viral buds are continuous sheets of these small particles, and the spacing between both nucleocapsids and stripes of surface antigen in buds is less than in the surrounding cell membrane. Detached virus is covered with a continuous layer of viral antigen, has unusually large but no small particles on its membrane surfaces exposed by freeze-fracturing, and no longer has nucleocapsids aligned under its surface. Thus, surface antigens, membrane particles, and nucleocapsids attached to the cell membrane are mobile within the plane of the membrane during viral maturation. All three move simutaneously in preparation for viral budding.

This content is only available as a PDF.