A method for the ultrastructural localization of acyltransferase enzymes involved in phospholipid metabolism has been applied to the developing rat trigeminal nerve. Determination of acyltransferase levels in the nerve indicated that a peak of activity occurs at the 8th day after birth with gradual declines of activity up to 15 days. Morphological surveys and determinations of cholesterol levels suggested that heavy myelin formation occurs in the nerve during this latter period. Fixed nerves incubated in a medium for localization of acyltransferases indicated deposition of reaction product associated with Golgi cisternae, intracellular smooth vesicles, and the plasma membrane of the Schwann cell in the incipient stages of myelin formation. Golgi-derived vesicles appeared to move toward the Schwann cell surface and fuse with the plasma membrane. Activity continued to be detectable in the plasma membrane of the internal mesaxon as long as cytoplasm was evident and mature myelin membrane was not yet formed. Cells in which myelin formation appeared advanced showed little or no enzyme marker. Consistent with cytochemical observations were biochemical determinations of acyltransferases which showed high levels of the enzymes in microsomes, while no activity could be detected in the myelin fraction. Acyltransferase reaction product was also observed in the Golgi apparatus of ganglion cell bodies, axoplasmic smooth vesicles, and the axolemma. Localization of acyltransferase enzymes in Schwann cells, ganglion cell bodies, and axons during development of the nerve is discussed in relation to membrane biogenesis in the nervous system.

This content is only available as a PDF.