The contractile response of turtle oviduct smooth muscle to acetylcholine after 30 min of incubation of muscles in Ca-free, 4 mM ethylene (bis) oxyethylenenitrilotetraacetic acid (EGTA) solutions at room temperature was greater than the contractile response after 30 min of incubation in the Ca-free medium at 37°C. Incubation in Ca-free solution at 37°C before stimulation with acetylcholine in Ca-free solutions at room temperature also reduced the contractile response, suggesting that activator calcium was lost from the fibers at a faster rate at higher temperatures. Electron micrographs of turtle oviduct smooth muscle revealed a sarcoplasmic reticulum (SR) occupying approximately 4% of the nucleus- and mitochondria-free cell volume. Incubation of oviduct smooth muscle with ferritin confirmed that the predominantly longitudinally oriented structures described as the SR did not communicate with the extracellular space. The SR formed fenestrations about the surface vesicles, and formed close contacts (couplings) with the surface membrane and surface vesicles in oviduct and vena caval smooth muscle; it is suggested that these are sites of electromechanical coupling. Calculation of the calcium requirements for smooth muscle contraction suggest that the amount of SR observed in the oviduct smooth muscle could supply the activator calcium for the contractions observed in Ca-free solutions. Incubation of oviduct smooth muscle in hypertonic solutions increased the electron opacity of the fibers. A new feature of some of the surface vesicles observed in oviduct, vena caval, and aortic smooth muscle was the presence of approximately 10 nm striations running approximately parallel to the openings of the vesicles to the extracellular space. Thick, thin, and intermediate filaments were observed in turtle oviduct smooth muscle, although the number of thick filaments seen in the present study appeared less than that previously found in mammalian smooth muscles.

This content is only available as a PDF.