A technique for the isolation of intact brush borders from rabbit renal cortex was evaluated. The procedure was monitored by phase and electron microscopy and marker enzymes, i.e. ATP:NMN adenylyl transferase, nuclear; cytochrome oxidase, mitochondrial; ß-glucuronidase, lysosomal; and glucose-6-Pase, microsomal; and indicated an essentially pure preparation of brush borders. The disaccharidase, trehalase, previously reported in renal tubules, was localized uniquely in brush borders. Maltase was also found; the specific activities of the two enzymes in the brush borders were increased 10- to 20-fold. Other disaccharidases, such as sucrase, isomaltase, lactase, and cellobiase, were absent. It is suggested that trehalase and maltase are appropriate candidates for marker enzymes of the renal brush border. Isolated brush borders possessed a ouabain-sensitive (Na+ + K+) ATPase, an oligomycin-insensitive Mg++ ATPase, and a Ca++-activated ATPase. Alkaline phosphatases, dephosphorylating ß-glycero-P, and trehalose-6-P were also present. The specific activities of these enzymes were increased three-to-five fold in the brush-border preparations; however, activities were found in other subcellular fractions of the renal cortex. Hexokinase, although evident in the isolated brush border, was found prominently associated with other membranous fractions. Phosphoglucomutase and UDPG pyrophosphorylase were localized in the soluble fraction of the renal cortex.

This content is only available as a PDF.