A new method for the subcellular and cytochemical demonstration of cytochrome oxidase has been developed with the introduction of N-benzyl-p-phenylenediamine (BPDA) and the discovery that indoanilines are osmiophilic. These indoanilines produced upon oxidation of BPDA in the presence of naphthols are highly colored compounds that yield electron-opaque coordination polymers of osmium (osmium black) that are amorphous, insoluble in water, and in organic solvents. The best methods for preparing rat tissue were in decreasing order: fixation in formaldehyde solution, fresh tissue slices, and frozen sections of fresh or fixed tissue. Ultrathin sections were counterstained by bridging with the thiocarbohydrazide-osmium tetroxide (T-O) procedure for enhancing underlying membranous structures. Cytochrome oxidase activity was noted primarily in mitochondria and occasionally in sarcotubules of heart, in mitochondria and occasionally in infoldings of the plasma membrane of renal tubular cells, and in mitochondria and, to a great extent, in endoplasmic reticulum of hepatic cells. Cytochrome oxidase activity produced deposits in droplet form, whereas dehydrogenase activity resulted in uniform staining of mitochondrial cristae, as recently demonstrated with an osmiophilic tetrazolium salt. Even more recently we have succeeded in demonstrating cytochrome oxidase activity in nondroplet staining on mitochondrial cristae with an osmiophilic benzidine-type reagent that apparently polymerizes upon oxidation (to be published later).

This content is only available as a PDF.