The nature and content of lytic bodies and the localization of acid phosphatase (AcPase) activity were investigated in mammotrophic hormone-producing cells (MT) from rat anterior pituitary glands. MT were examined from lactating rats in which secretion of MTH1 was high and from postlactating rats in which MTH secretion was suppressed by removing the suckling young. MT from lactating animals contained abundant stacks of rough-surfaced ER, a large Golgi complex with many forming secretory granules, and a few lytic bodies, primarily multivesicular bodies and dense bodies. MT from postlactating animals, sacrificed at selected intervals up to 96 hr after separation from their suckling young, showed (a) progressive involution of the protein synthetic apparatus with sequestration of ER and ribosomes in autophagic vacuoles, and (b) incorporation of secretory granules into multivesicular and dense bodies. The content of mature granules typically was incorporated into dense bodies whereas that of immature granules found its way preferentially into multivesicular bodies. The secretory granules and cytoplasmic constituents segregated within lytic bodies were progressively degraded over a period of 24 to 72 hr to yield a common residual body, the vacuolated dense body. In MT from lactating animals, AcPase reaction product was found in lytic bodies, and in several other sites not usually considered to be lysosomal in nature, i.e., inner Golgi cisterna and associated vesicles, and around most of the immature, and some of the mature secretory granules. In MT from postlactating animals, AcPase was concentrated in lytic bodies; reaction product and incorporated secretory granules were frequently recognizable within the same multivesicular or dense body which could therefore be identified as "autolysosomes" connected with the digestion of endogenous materials. Several possible explanations for the occurrence of AcPase in nonlysosomal sites are discussed. From the findings it is concluded that, in secretory cells, lysosomes function in the regulation of the secretory process by providing a mechanism which takes care of overproduction of secretory products.

This content is only available as a PDF.