An electron microscope study of the innervation of smooth muscle of the guinea pig vas deferens was undertaken in order to find a structural basis for recent electrophysiological observations. The external longitudinal muscle coat was examined in transverse section. Large areas of the surfaces of adjacent muscle cells were 500 to 800 A apart. Closer contacts were rare. A special type of close contact suggested cytoplasmic transfer between neighbouring cells. Groups of non-myelinated axons from ganglia at the distal end of the hypogastric nerve ramified throughout the muscle. Some small axon bundles and single axons lay in narrow fissures within closely packed muscle masses. Many axons contained "synaptic vesicles." About 25 per cent of the muscle fibres in the plane of section were within 0.25 µ of a partly naked axon; of these 15 per cent were within 500 A of the axon, and about 1 per cent made close contact (200 A) with a naked axon. It is unlikely that every muscle fibre is in close contact with an axon, and it is not possible for every fibre to have many such contacts. Muscle fibres are probably activated by both diffusion of transmitter from naked portions of axons a fraction of a micron distant, and electrotonic spread of activity from neighbouring cells.

This content is only available as a PDF.