The cells of the anterior region of the larval fatbody of Drosophila melanogaster accumulate kynurenine at the end of the third larval instar, whereas the cells of the posterior region are involved in pteridine metabolism. Through a series of transplantation experiments it has been demonstrated that the anterior fat cells synthesize kynurenine. The mutant vermilion lacks kynurenine, and the anterior fat cells of this mutant strain lack the autofluorescence characteristic of kynurenine. When the non-allelic suppressor gene is combined with vermilion, the synthesis of kynurenine is restored in the anterior fat cells, and some of the cells of the posterior region contain kynurenine as well. A similar extension in the number of cells containing kynurenine can be induced in the normal Ore-R strain by feeding the precursor tryptophan. It has been concluded that the absence of a physiological process in a differentiated cell does not necessarily represent a loss of the genetic potential for that process. The normal allele at the suppressor locus inhibits the occurrence of kynurenine in the posterior fat cells, whereas the mutant allele su2-s allows the expression of this potential. An inducer such as tryptophan can overcome this inhibition in the normal strain, and as a result the cells which are normally differentiated as "isoxanthopterin cells" may produce kynurenine as well.

This content is only available as a PDF.