Adducin is a heteromeric protein with subunits containing a COOH-terminal myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that caps and preferentially recruits spectrin to the fast-growing ends of actin filaments. The basic MARCKS-related domain, present in α, β, and γ adducin subunits, binds calmodulin and contains the major phosphorylation site for protein kinase C (PKC). This report presents the first evidence that phosphorylation of the MARCKS-related domain modifies in vitro and in vivo activities of adducin involving actin and spectrin, and we demonstrate that adducin is a prominent in vivo substrate for PKC or other phorbol 12-myristate 13-acetate (PMA)-activated kinases in multiple cell types, including neurons. PKC phosphorylation of native and recombinant adducin inhibited actin capping measured using pyrene-actin polymerization and abolished activity of adducin in recruiting spectrin to ends and sides of actin filaments. A polyclonal antibody specific to the phosphorylated state of the RTPS-serine, which is the major PKC phosphorylation site in the MARCKS-related domain, was used to evaluate phosphorylation of adducin in cells. Reactivity with phosphoadducin antibody in immunoblots increased twofold in rat hippocampal slices, eight- to ninefold in human embryonal kidney (HEK 293) cells, threefold in MDCK cells, and greater than 10-fold in human erythrocytes after treatments with PMA, but not with forskolin. Thus, the RTPS-serine of adducin is an in vivo phosphorylation site for PKC or other PMA-activated kinases but not for cAMP-dependent protein kinase in a variety of cell types. Physiological consequences of the two PKC phosphorylation sites in the MARCKS-related domain were investigated by stably transfecting MDCK cells with either wild-type or PKC-unphosphorylatable S716A/S726A mutant α adducin. The mutant α adducin was no longer concentrated at the cell membrane at sites of cell–cell contact, and instead it was distributed as a cytoplasmic punctate pattern. Moreover, the cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin, which was colocalized with the mutant α adducin in a punctate pattern. Immunofluorescence with the phosphoadducin-specific antibody revealed the RTPS-serine phosphorylation of adducin in postsynaptic areas in the developing rat hippocampus. High levels of the phosphoadducin were detected in the dendritic spines of cultured hippocampal neurons. Spectrin also was a component of dendritic spines, although at distinct sites from the ones containing phosphoadducin. These data demonstrate that adducin is a significant in vivo substrate for PKC or other PMA-activated kinases in a variety of cells, and that phosphorylation of adducin occurs in dendritic spines that are believed to respond to external signals by changes in morphology and reorganization of cytoskeletal structures.

Adducin is a ubiquitously expressed calmodulin-binding protein (Gardner and Bennett, 1986; Bennett et al., 1988) and substrate for protein kinase C (PKC)1 (Palfrey and Waseem, 1985; Cohen and Foley, 1986; Ling et al., 1986; Kaiser et al., 1989). Adducin was first purified from human erythrocyte membrane skeletons (Gardner and Bennett, 1986) and from brain membranes (Bennett et al., 1988). Adducin is localized at spectrin–actin junctions in erythrocyte membrane skeletons (Derick et al. 1992) and colocalizes with spectrin at sites of cell–cell contact in epithelial cells (Kaiser et al., 1989; Hu et al., 1995) and in dendritic spines of hippocampal neurons (Seidel et al., 1995). Adducin exhibits in vitro activities of promoting association of spectrin with actin (Gardner and Bennett, 1987; Bennett et al., 1988), association with sides of actin filaments (Mische et al., 1987; Taylor and Taylor, 1994), and capping the fast-growing ends of actin filaments (Kuhlman et al., 1996). Recently, adducin has been demonstrated to preferentially cap and recruit spectrin to the fast-growing ends of actin filaments (Li et al., 1998).

Adducin is a heteromeric protein comprised of either α and β or α and γ subunits (Gardner and Bennett, 1986; Bennett et al., 1988; Dong et al., 1995; Hughes and Bennett, 1995). α adducin is expressed in most tissues, while β adducin has a more restricted pattern of expression (Joshi et al., 1991). γ adducin, which is similar in sequence to α and β adducin, is a likely companion for α adducin in cells lacking the β subunit (Dong et al., 1995). Adducin subunits are closely related in amino acid sequence and domain organization (Joshi and Bennett, 1990; Joshi et al., 1991; Dong et al., 1995). Each adducin subunit has three distinct domains: a 39-kD NH2-terminal globular protease-resistant head domain, connected by a 9-kD “neck” domain to a COOH-terminal protease-sensitive tail domain (Joshi and Bennett, 1990; Joshi et al., 1991; Dong et al., 1995). Adducin isolated from erythrocytes is a mixture of heterodimers and tetramers with NH3-terminal head domains in contact to form a globular core and with interacting tails extended away from the core (Hughes and Bennett, 1995).

COOH termini of all three subunits of adducin contain a highly basic stretch of 22 amino acids with sequence similarity to a domain in the myristoylated alanine-rich C kinase substrate (MARCKS protein) (Joshi et al., 1991; Dong et al., 1995). The MARCKS-related domain is required for interactions of adducin with actin and spectrin, which is consistent with the possibility that the MARCKS-related domain mediates contact with actin (Li et al., 1998). The MARCKS-related domain also has a major phosphorylation site, the RTPS-serine, for PKC as well as cAMP-dependent protein kinase (PKA), and contains the primary calmodulin-binding site of adducin (Matsuoka et al., 1996). Ca2+/calmodulin inhibits actin-capping and spectrin recruitment activities of adducin (Gardner and Bennett, 1987; Kuhlman et al., 1996). Although phosphorylation of the MARCKS-related domain by PKC inhibits calmodulin binding (Matsuoka et al., 1996), effects of phosphorylation on the other activities of adducin have not been resolved.

The MARCKS family of proteins has been studied extensively as in vivo substrates of PKC (Aderem, 1992; Blackshear, 1993). A 25–amino acid basic domain is the site for both PKC phosphorylation and calmodulin binding of the MARCKS protein and is similar in sequence to the MARCKS-related domain of adducin (Aderem, 1992; Blackshear, 1993). The MARCKS protein binds and cross-links actin in in vitro assays, and its capacity to cross-link actin is regulated by PKC phosphorylation and calmodulin-binding to the phosphorylation site domain (Hartwig et al., 1992). A COOH-terminal (C1) region in the NR1 subunit of N-methyl-d-aspartate (NMDA) receptor, a glutamate receptor of neuron, has sequence similarity to the PKC phosphorylation/calmodulin-binding domain of the MARCKS protein (Tingley et al., 1993; Ehlers et al., 1996). The C1 region also contains PKC phosphorylation sites and is a high-affinity binding site for calmodulin (Tingley et al., 1993; Ehlers et al., 1996). Moreover, phosphorylation and calmodulin-binding to the C1 region may regulate interaction of the NR1 subunit of NMDA receptor with the actin cytoskeleton (Ehlers et al., 1995, 1996). The PKC phosphorylation site domain of the MARCKS protein is also involved in its cell membrane binding through the interaction between a cluster of basic residues and acidic phospholipids, such as phosphatidylserine (Kim et al., 1994; McLaughlin and Aderem, 1995). Phosphorylation of the serine residues in the poly-basic domain reduces its electrostatic interaction with the phospholipids and has been proposed to provide an electrostatic switch mechanism for the reversible binding of the MARCKS protein to the cell membrane.

This report presents evidence that adducin is an in vivo substrate for PKC or other phorbol 12-myristate 13-acetate (PMA)-activated kinases, and that activities of adducin in capping and recruiting spectrin to actin filaments are regulated by PKC phosphorylation of the MARCKS- related domain. Mutation of the two PKC phosphorylation sites in the MARCKS-related domain of α adducin produced striking effects on distribution of the mutant adducin as well as of spectrin in MDCK cells. Adducin phosphorylated at the major PKC site in the MARCKS-related domain was specifically localized in dendritic spines of cultured neurons. Adducin is a candidate molecule to mediate downstream consequences of PKC activation in postsynaptic sites in neurons as well as other dynamic cellular domains.

Proteins

Actin was purified from acetone powder of rabbit skeletal muscle (Pardee and Spudich, 1982) with a modification (Li and Bennett, 1996). Brain spectrin was isolated by high salt extraction from bovine brain membranes (Davis and Bennett, 1983; Li and Bennett, 1996). Erythrocyte adducin and a recombinant β adducin (β335–726) were purified as previously described (Hughes and Bennett, 1995; Li et al., 1998). The catalytic domain of PKC was purchased from Calbiochem (San Diego, CA).

Antibodies

Phosphoadducin-specific rabbit polyclonal antibody was raised against a synthetic phosphopeptide (FRTPphosphoSFLKK) (Andrews et al., 1991) corresponding to the major PKC phosphorylation site of adducin (Matsuoka et al., 1996) and affinity-purified as described (Matsuoka et al., 1992). This antibody was preincubated with the unphosphorylated form of the peptide and used in this study. Polyclonal antibodies against α adducin and the MARCKS-related domain were generated using a recombinant human α adducin (residues 536–737) and a synthetic peptide corresponding to the residues 696–726 of human β adducin, respectively, as antigens. Affinity- purified rabbit polyclonal antibody against brain spectrin was reported previously (Davis and Bennett, 1983). An anti–spectrin βG monoclonal antibody was raised against a synthetic peptide corresponding to the residues 2096– 2122 of human β spectrin. Monoclonal anti-hemagglutinin (HA) epitope antibody (HA.11) was purchased from Berkeley Antibody Co. (Richmond, CA), monoclonal antisynaptophysin antibody was from Boehringer Mannheim (Indianapolis, IN), anti-GluR2/4 antibody (clone 3A11) was from PharMingen (San Diego, CA), and FITC- and TRITC-conjugated goat secondary antibodies were from Pierce Chemical Co. (Rockford, IL).

Phosphorylation of Adducin and Protease Digestion

Erythrocyte adducin (2.5 μM monomer) and β335–726 (5 μM monomer) were phosphorylated by incubation with 0.4 μg/ml catalytic domain of PKC (PKM), 0.1 mM ATP, 5 mM MgCl2, 2 mM sodium EGTA, 25 mM Tris-HCl, pH 7.5 at 15°C for 12–14 h. The reaction was terminated by adding 50 nM (final) bisindolylmaleimide (Calbiochem). ATP was added to the unphosphorylated adducin sample after quenching the reaction. To measure stoichiometry of the phosphorylation, adducin was phosphorylated in parallel using 0.1 mM [γ-32P]ATP. The sample was processed as described previously (Matsuoka et al., 1996). In some experiments, [32P]phosphoadducin (50 μg) was digested with Staphylococcus aureus V8 protease (1:50 wt/wt; Pierce Chemical Co.) for 3 h at 30°C as described previously (Matsuoka et al., 1996). After quenching the digestion by adding 2 mM PMSF, the sample was applied to an S-Sepharose column (0.5 ml bed volume; Pharmacia Biotech, Piscataway, NJ) equilibrated with 20 mM Tris-HCl, 2 mM sodium EGTA, 1 mM DTT, 1 mM PMSF, pH 8.0 (column buffer). Fractions (0.2 ml) were collected by eluting the column with a step gradient of NaBr (0.1, 0.2, 0.3, and 0.5 M in the column buffer) after wash with the column buffer and subjected to scintillation counting and SDS-PAGE (3.5–17%).

Actin Polymerization and Depolymerization Assays

Pyrene-labeled actin was prepared according to the method modified by Weber et al. (1987). G buffer (5 mM Tris-HCl, 0.2 mM Na2ATP, 0.5 mM 2-mercaptoethanol, 0.2 mM CaCl2, 0.005% sodium azide, pH 8.0, at 25°C) was used in all assays. The assay used to quantitate inhibition of actin polymerization at the barbed ends used the method of Pollard (1983), in which rapid polymerization was initiated using F-actin nuclei.

Spectrin Recruitment Assay

A full description of this assay system is presented in Li et al. (1998).

Immunoblotting

Hippocampal slices (220 μm) were prepared from 5–6-wk-old Sprague-Dawley rats according to Garver et al. (1995). Slices were immediately immersed in an ice-cold preincubation buffer (Garver et al., 1995) and incubated with 40 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; Tocris Cookson, Ballwin, MO) in the buffer at 37°C for 30 min. Buffer was replaced with the fresh one without CNQX before further manipulations. Human erythrocytes were separated and resuspended in the modified Hepes-Tyrode buffer (Matsuoka et al., 1994) at a final concentration of 20%. Human embryonal kidney cell line (HEK 293; American Type Culture Collection, Rockville, MD) was maintained in 5% FCS/DME and serum-starved overnight before the following treatments. Human erythrocytes (1 ml suspension), HEK 293 cells (φ 6-cm dish), and rat hippocampal slices (5–10 slices) were treated either with 50 μM 3-isobutyl-1-methylxanthine (IBMX; Calbiochem)/50 μM forskolin (Calbiochem) or 1 μM PMA (Calbiochem) at 37°C for 15 min. After the treatments, erythrocytes were lysed, and the membrane fractions were collected. Erythrocyte membranes, HEK 293 cells, and rat hippocampal slices were solubilized in a minimum volume of 50 mM Tris-HCl, pH 7.5, 7 M urea, 1% SDS, 5 mM sodium EDTA, 1 mM DTT, 10 μg/ml leupeptin, 1 mM PMSF with brief sonication. Proteins (10 μg) were separated by SDS gel electrophoresis with buffers of Fairbanks et al. (1971) on 5% gels in 0.2% SDS. The amounts of phosphoadducin and α adducin were determined from scans of the autoradiographs using a densitometer as described elsewhere (Matsuoka et al., 1994). The amount of phosphoadducin in each lane was normalized by the amount of α adducin loaded and was used to calculate the change of phosphoadducin level after treatment.

Construct Generation and Transfection of MDCK Cells

An HA epitope–tagged wild-type α adducin cDNA in pGEMEX vector was used as a template to mutate the PKC phosphorylation sites in MARCKS-related domain (Ser716 and Ser726) to alanine residues. Sense (5′-CCGGCCTTTCTTAAGAAGAGCAAGAAGAAGAGTGACTCC-3′) and antisense (5′-GGTACGAAACTTCTTCTTCTTTTTGGCTGGGGACTTGC-3′) primers were used to mutate the sites with the Exsite PCR-based mutagenesis kit (Stratagene, La Jolla, CA). Mutation of the construct was confirmed by DNA sequencing. Both HA epitope–tagged wild-type and PKC sites–mutated α-adducin cDNA were subcloned into pCMV vector (Garver et al., 1997) at NheI-XhoI sites. Transfection of MDCK cells was performed using lipofectamine (GIBCO-BRL, Gaithersburg, MD) as described elsewhere (Garver et al., 1997).

Rat Hippocampal Cell Culture

Isolation of hippocampal formations from newborn (P2) Sprague-Dawley rats and the dissociation of neurons was performed as described (Brewer et al., 1993) with a modification. Briefly, hippocampi from newborn rats were first incubated with 0.027% trypsin in HBSS without Ca2+ and Mg2+, 0.035% sodium bicarbonate, 1 mM pyruvate, 10 mM Hepes, pH 7.4 (HBSS), in a 95% O2, 5% CO2 incubator for 20 min at 35°C. Hippocampi were washed with HBSS and triturated through a 1-ml plastic pipette tip in HBSS. 1 ml of cell suspension was diluted with 2 ml HBSS with Ca2+, Mg2+. The cells were collected by centrifugation for 1 min at 200 g, resuspended in Neurobasal medium (GIBCO-BRL) containing 0.5 mM glutamine, 25 μM glutamate, and 1% B-27 supplement (GIBCO-BRL), and plated at a concentration of 160 cells/mm2. Half of the culture medium was replaced by the same medium without glutamate every 4 d. Primary culture of hippocampal neuron was maintained for at least 7 d before the following treatment. Neurons were incubated with fresh Neurobasal medium (no glutamate) containing 15 mM MgCl2 without B-27 supplement for 90 min, and with 40 μM CNQX for a further 30 min before activation. The medium was changed to the new one (0.8 mM MgCl2), and either 10 μM glutamate or 1 μM PMA was applied to the neurons at 37°C for 6 min.

Immunofluorescence

P15 rat brain was fixed and processed as described elsewhere (Lambert and Bennett, 1993). Cells were fixed with 4% formaldehyde (freshly made from paraformaldehyde) in 0.1 M phosphate buffer, pH 7.4, containing 0.32 M sucrose for 10 min at room temperature. After fixation, cells were permeabilized and blocked with 0.05% Triton X-100 (1% for MDCK cells) in a blocking buffer (PBS with 10% goat serum, 1% BSA, and 5% sucrose) for 15 min at room temperature. Cells were then incubated with primary antibodies diluted in the blocking buffer followed by FITC- or TRITC-conjugated goat secondary antibodies (1.5 μg/ml; Pierce Chemical Co.).

PKC Phosphorylation of the MARCKS-related Domain of Adducin Modulates Activities of Actin Capping and Promoting Spectrin–Actin Complexes

In a previous study, we did not observe an effect of PKC phosphorylation on the activity of adducin in promoting binding of spectrin to F-actin (Matsuoka et al., 1996). In these experiments, phosphatidylserine and a phorbol ester were included to activate PKC isolated from rat brain, which was used at a concentration of 125 nM (Matsuoka et al., 1996). It is possible that either PKC itself, a contaminant in the PKC preparation, or phosphatidylserine obscured effect of the phosphorylation in the assay, even though in some experiments the phosphoadducin was isolated by cation exchange chromatography. In the present study, PKM, which lacks the regulatory domain and does not require phosphatidylserine or PMA for its activity, was used at 15-fold lower concentrations than used previously to phosphorylate adducin. Kinase activity was quenched with bisindolylmaleimide, and adducin samples in the phosphorylation mixture were directly used for actin capping and spectrin recruitment assays in this study. Controls included the kinase and inhibitor, with ATP added after quenching the phosphorylation reaction.

The MARCKS-related domain of adducin was also the major phosphorylation site for PKM. 75% of the radioactivity in V8 protease digests of 32P-labeled adducin phosphorylated by PKM (0.9 mol phosphate/mol subunit) associated with fragments migrating at the same position as the MARCKS-related domain of β adducin (Fig. 1,A). In addition, these fragments were highly positively charged, since the polypeptides tightly bound to a cation-exchange resin at pH 8 (>0.3 M NaBr was required to elute the fragments) (Fig. 1,A), as did the polybasic MARCKS-related domain (Matsuoka et al., 1996). Therefore, the V8 fragments most likely are the MARCKS-related domains of α and β adducin. PKM also phosphorylated the major PKC-site in the MARCKS-related domain based on immunoreactivity with phosphoadducin-specific antibody (see below) (Fig. 3 C). Similar results were obtained using the neck–tail domain construct of human β adducin (β335–726) (data not shown). Taken together, these results support the conclusion that the MARCKS-related domain is the major phosphorylation site of adducin for PKM as well as for PKC.

In a recent study, we have demonstrated that recombinant β335–726 adducin has comparable activity with that of erythrocyte adducin (Li et al., 1998). Therefore, β335–726 adducin was first used to investigate phosphorylation effects on its actin capping activity. PKM phosphorylation of the MARCKS-related domain (1.9 mol Pi/mol β335–726) greatly reduced the capping activity of β335–726 adducin from 68 to 12% at 0.5 μM of the construct (Fig. 1,B). Similar results were obtained at up to 1 μM of the construct (data not shown). The ability of PKM phosphorylation to eliminate the barbed end capping activity of adducin was also seen in actin depolymerization experiments, as evidenced by the return of the depolymerization rate in the presence of adducin phosphorylated by PKM to that of pure actin (Fig. 1,C). PKM phosphorylation of the MARCKS- related domain (0.9 mol Pi/mol subunit) also greatly reduced the capping activity of native adducin (Fig. 1 D). The average reduction of capping activity by phosphorylation was 64 ± 14%. Similar results were obtained using β335–726 (data not shown).

Spectrin recruiting activity of adducin was also found to be a target of regulation through phosphorylation of the MARCKS-related domain. Phosphorylation of adducin by PKM almost completely abolished spectrin recruiting activity at up to 600 nM of the phosphorylated adducin (Fig. 2). Since adducin promotes binding of spectrin to the fast-growing ends of actin filaments in addition to filament sides (Li et al., 1998), recruitment of spectrin to both the ends and sides of actin filaments is inhibited by PKM phosphorylation. PKM phosphorylation showed a stronger effect on spectrin recruitment activity than actin capping, although the basis for this difference is not known. This is the first demonstration that actin filament capping and spectrin recruiting activities of adducin can be regulated by phosphorylation of the MARCKS-related domain. The MARCKS-related domain is thus a site of regulation for actin filament capping and spectrin recruiting activities of adducin as well as the primary functional domain for these activities.

Phosphorylation of the MARCKS-related Domain of Adducin Occurs In Vivo

Antibodies specific to phosphorylated sites of a substrate are particularly useful tools to evaluate the extent of in vivo phosphorylation and to determine the cellular localization of phosphorylated proteins (Nishizawa et al., 1991; Dent and Meiri, 1992; Matsuoka et al., 1992; Liao et al., 1995). We produced an antibody against a peptide, FRTPphosphoSFLKK, containing the phosphorylated form of the RTPS-serine, which is the major site of phosphorylation by PKC of adducin (Matsuoka et al., 1996). The RTPS-serine is also phosphorylated by PKA, although the Km of PKA for adducin is 10-fold higher than that of PKC (Matsuoka et al., 1996).

Immunoblots revealed that the RTPS-phosphoserine– specific antibody has negligible reactivity towards adducin in unstimulated human erythrocytes (Fig. 3,A, a), but at least a 10-fold increase in signal occurred after activation of PKC by addition of phorbol ester (PMA) (Fig. 3,A, c). The phosphoadducin antibody was specific for adducin based on lack of reaction with other proteins in crude homogenates or with recombinant human MARCKS protein (data not shown). Moreover, the antibody reaction was displaced completely by a 10-fold molar excess of the phosphopeptide (data not shown). An eight- to ninefold increase in reactivity with the phosphoadducin-specific antibody occurred after PMA treatment of human embryonal kidney (HEK 293) cells (Fig. 3,A, d and f), and a twofold increase occurred in rat hippocampal slices (Fig. 3,A, g and i). In contrast to PMA, forskolin (50 μM), an adenylyl cyclase activator, even in combination with a phosphodiesterase inhibitor (IBMX, 50 μM), resulted in only a 1.4-fold increase of the phosphorylation in HEK 293 cells (Fig. 3,A, b, e, and h). Thus, the RTPS-serine in the MARCKS-related domain of each adducin subunit is an in vivo phosphorylation site for PKC or other PMA-activated kinases but not PKA. A 90-kD adducin polypeptide detected in HEK 293 cells may correspond to the human counterpart of rat γ adducin (Dong et al., 1995) (Fig. 3 A, f).

Recombinant human α adducin (residues 536–737) was used to produce an anti–α adducin antibody. The affinity-purified antibody specifically recognized α adducin in human erythrocytes (Fig. 3,B, a–c). The amount of α adducin was used, as a representative of adducin subunits, to normalize the amount of phosphoadducin in each sample. α and β adducin in HEK 293 cells and rat hippocampal lysates migrated at the same position as human erythrocyte α adducin, as confirmed by antibodies specific to human α (Fig. 3 B, d–f and g–i) and β (data not shown) adducin.

Specificity of the phosphoadducin antibody was further analyzed using α adducin mutated at Ser716Ala/ Ser726Ala and resistant to phosphorylation by PKC (referred to as α adducinΔpkc). The HA epitope–tagged α adducin and α adducinΔpkc expressed in MDCK cells were immunoprecipitated by an anti–HA epitope antibody followed by immunoblot with the phosphoadducin-specific antibody. Reactivity of the phosphoadducin antibody for the HA epitope–tagged α adducin was increased about threefold after PMA treatment (0.1 μM, 15 min) of the cells, whereas the antibody showed no reactivity toward α adducinΔpkc (Fig. 3 C). Lack of reactivity of the phosphoadducin antibody with α adducinΔpkc provides additional support for its specificity toward the RTPS-phosphoserine of adducin.

The RTPS-Phosphoserine Adducin and Spectrin Accumulate in the Cytoplasm in MDCK Cells after PMA Treatment

α adducin and spectrin were concentrated at the cell membrane of cell–cell contact sites in serum-starved MDCK cells as reported previously (Fig. 4,A and Kaiser et al., 1989). The anti–α adducin antibody also consistently showed weak nuclear staining (Fig. 4,A, b and e). Very low levels of the RTPS-serine phosphorylation was detected in the cytoplasm, while none was detected at the cell–cell contact sites of the cells using the phosphoadducin antibody (Fig. 4,B, b). When the cells were stimulated with PMA, levels of α adducin slightly but significantly increased in the cytoplasm (Fig. 4,A, e). Increase of the RTPS-phosphoserine adducin was clearly observed in the cytoplasm (Fig. 4,B, e). The increases of α adducin and the phosphoadducin were accompanied by redistribution of spectrin from the cell–cell contact sites into the cytoplasm (Fig. 4, A and B). Phosphoadducin and spectrin were distributed in a punctate pattern in the cytoplasm after PMA treatment (Fig. 4 B, d and e). Redistribution of adducin and spectrin from the cell membrane into the cytoplasm has been reported in several types of epithelial cells treated with PMA (Kaiser et al., 1989; Dong et al., 1995). Similar results were also obtained using HEK 293 cells (data not shown). Therefore, phosphorylation of the RTPS-serine in adducin appears to correlate closely with redistribution of the protein and spectrin from the cell membrane into the cytoplasm. This is consistent with the biochemical data showing that phosphorylation of the MARCKS-related domain by PKC interferes with interactions of adducin with spectrin and actin.

Phosphorylation State of the MARCKS-related Domain Determines Adducin Distribution in MDCK Cells

Roles of the phosphorylation state of the MARCKS- related domain in determining distribution of adducin and spectrin were evaluated by transfecting cells with α adducinΔpkc, which was resistant to phosphorylation by PKC at the MARCKS-related domain. MDCK cell lines were generated that stably expressed the HA epitope–tagged human α adducin (MDCK/α add) and the mutant human α adducin (MDCK/α addΔpkc) (see Materials and Methods).

The HA epitope–tagged human α adducin and spectrin in MDCK/α add cells were concentrated at the cell membrane at sites of cell–cell contact (Fig. 5, a–c) as observed for the native proteins in nontransfected cells (Fig. 4,A). We assumed that a PKC-unphosphorylatable version of adducin would stay at the cell membrane even after PMA treatment if phosphorylation of the PKC sites in MARCKS-related domain was responsible for the redistribution of adducin. Surprisingly, the mutant α adducin was not localized at the cell–cell contact sites of the PMA-untreated cells, but instead exhibited a punctate distribution in the cytoplasm (Fig. 5, d and f). Moreover, cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin in a punctate pattern, which was in some cases colocalized with the mutant α adducin (Fig. 5, e and f). This result clearly showed involvement of the PKC phosphorylation sites in controlling subcellular distribution of adducin as well as spectrin. The nature of the punctate structures containing the mutant adducin and spectrin has not been resolved, but they could represent vesicles en route to or returning from the plasma membrane.

Localization of the RTPS-Phosphoserine Adducin in the Hippocampus

High levels of the phosphoadducin were detected in the dendritic fields, i.e., stratum radiatum and stratum oriens, of CA1 region in P15 rat hippocampus (Fig. 6,a). In the dentate gyrus, the staining intensity for phosphoadducin was higher in the hilus region than in the molecular layer (Fig. 6,a). In the dendritic fields of CA3 region, phosphoadducin staining was slightly weaker than CA1 region (Fig. 6,b). Confocal microscopy for stratum radiatum of CA1 region at high magnification revealed phosphoadducin antibody staining of round and elliptical structures with diameters <1 μm (Fig. 6,c). Double labeling with antibodies against synaptophysin and the phosphoadducin revealed that some of the phosphoadducin-stained structures were immediately adjacent to presynaptic endings defined by synaptophysin staining. (Fig. 6 c, arrows). Synaptophysin is a marker for neurosecretory vesicles, which are concentrated at presynaptic endings (Wiedenmann and Franke, 1985). Therefore, at least a subpopulation of the phosphoadducin-positive structures may correspond to dendritic spines, which are specialized postsynaptic structures.

Localization of the Phosphoadducin in Dendritic Spines of Cultured Hippocampal Neurons

Resolution of dendritic spines is difficult in brain tissue sections, but these structures can be visualized in cultured hippocampal neurons. Distributions of the RTPS-phosphoserine adducin and total adducin were compared in cultured hippocampal neurons using the phosphoadducin-specific and the MARCKS-related domain–specific antibodies, respectively. Phosphoadducin was highly concentrated in spots flanking dendrites, which we interpret to be dendritic spines based on colocalization with AMPA receptors (a non-NMDA glutamate receptor) detected using antibody against the GluR2/4 subunits (Fig. 7, a–c, arrowheads). At least 80% of the spots contained both proteins, although in some cases the phosphoadducin-positive spots did not contain GluR2/4 and vice versa (Fig. 7, compare a and b). This result strongly supports the interpretation that the small structures containing high levels of the phosphoadducin observed in brain sections (Fig. 6 c) are dendritic spines.

Neither glutamate nor PMA treatment caused further increase in the level of adducin phosphorylation in spines (the ratio of the signals, phosphoadducin/glutamate receptor, was used to assess changes of adducin phosphorylation, n = 20 each) (Fig. 7, d–i). The cultures were preincubated with glutamate-free medium in the presence of high Mg2+ (15 mM) and an AMPA receptor antagonist (CNQX) to block NMDA and non-NMDA receptors, respectively (see Materials and Methods). Adducin therefore already was fully phosphorylated in the dendritic spines of hippocampal neurons under resting conditions in culture. However, PMA treatment did strongly enhance levels of the phosphoadducin located at the plasma membrane of cell body, the cytoplasm and dendrites (Fig. 7 h). The membrane-associated phosphoadducin was unanticipated. This result suggests involvement of additional domains, such as the head domain, for adducin to associate with the cell membrane.

Total adducin staining using antibody against the MARCKS-related domain, in contrast to the phosphoadducin, was observed along the entire cell membrane and in the cytoplasm of cell body and dendrites as well as in the dendritic spines (Fig. 8, a–c). No significant changes of adducin distribution were observed after glutamate and PMA treatments of the neurons (Fig. 8, d–f and g–i). However, the MARCKS-related domain–specific antibody has weak reactivity with the RTPS-phosphoserine adducin and underrepresents phosphoadducin (data not shown). These results combined with Fig. 7 demonstrate that adducin is uniformly distributed along the plasma membrane and that dendritic spines are the most active sites for adducin phosphorylation in hippocampal neurons.

Spectrin βG was located mostly in a punctate pattern associated with dendrites that were not labeled with the phosphoadducin antibody (Fig. 9). These findings suggest that spectrin and phosphoadducin exist in distinct sites in neurons.

This study presents the first evidence that phosphorylation of the RTPS-serine in the MARCKS-related domain of adducin occurs in vivo and has an important role in regulating distribution of adducin in cells. Furthermore, phosphorylation by PKC of adducin at the MARCKS-related domain inhibits adducin activities of promoting spectrin–actin interactions and capping the fast-growing ends of actin filaments. PMA-activated phosphorylation of the RTPS-serine was demonstrated, using a phosphoadducin-specific antibody, in erythrocytes, HEK 293 cells (human embryonic kidney origin), brain slices, and MDCK cells. A PKC-unphosphorylatable S716A/S726A mutant α adducin expressed in MDCK cells was distributed in a cytoplasmic punctate pattern and was no longer concentrated at the cell membrane at sites of cell–cell contact. Moreover, cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin, which was colocalized with the mutant adducin in a punctate pattern. Finally, high levels of the RTPS-serine phosphorylation were visualized in sections of rat hippocampus and in the dendritic spines of cultured hippocampal neurons.

Dendritic spines are dynamic structures that receive the majority of exitatory synaptic connections in the mammalian central nervous system (Harris et al., 1992; Papa et al., 1995; Ziv and Smith, 1996). Dendritic spines change in shape during neuronal development as well as concurrently with long-term potentiation, a widely studied experimental model of learning (Fifkova and Van Harreveld, 1977; Schuster et al., 1990; Geinisman et al., 1991; Hosokawa et al., 1995). Actin and actin-binding proteins, including spectrin, adducin, and myosin, are the major cytoskeletal components in dendritic spines, where microtubules and neurofilaments are virtually absent (Westrum et al., 1980; Landis and Reese, 1983; Morales and Fifkova, 1989; Seidel et al., 1995). The actin filaments of the spine neck are longitudinally situated, whereas those in the head are organized into a lattice (Fifkova and Delay, 1982). This organization suggests that actin filaments provide the basic structural scaffolding of the spine (Harris and Kater, 1994). Thus, changes in the spine actin network through modulation of the activities of actin-regulating proteins have been proposed as a basis for activity-dependent structural changes in spine morphology (Coss and Perkel, 1985; Fifkova and Morales, 1991).

Synaptic stimulation of dendritic spines induces an increase in Ca2+ up to micromolar levels (Holmes, 1990; Gold and Bear, 1994). Probable targets for Ca2+ in dendritic spines include calmodulin (Malenka et al., 1989; Ehlers et al., 1996; Wyszynski et al., 1997), PKC (Malinow et al., 1989; Abeliovich et al., 1993; Hrabetova and Sacktor, 1996), Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Silva et al., 1992; Kennedy, 1993; Lledo et al., 1995), and Ca2+/calmodulin- dependent protein phosphatase 2B or calcineurin (Mulkey et al., 1994). Among substrates for these enzymes are several cytoskeletal proteins, including microtubule-associated protein 2, (Quinlan and Halpain, 1996), myosin (Kawamoto et al., 1989), and adducin. However, adducin is the first cytoskeletal protein directly demonstrated to be phosphorylated in dendritic spines of living hippocampal neurons. Given the biochemical activities of adducin in promoting assembly of spectrin–actin complexes and that these activities of adducin are regulated by PKC and calmodulin, adducin is a logical candidate to participate in activity-dependent shape changes of dendritic spines. In addition, the striking localization of phosphoadducin in the spines further supports the idea that dendritic spines are distinct biochemical and Ca2+ compartments (Guthrie et al., 1991; Müller and Connor, 1991; Koch and Zador, 1993; Yuste and Denk, 1995).

The identity of adducin kinase(s) and phosphatases responsible for regulating the phosphorylation state of adducin in dendritic spines remains to be determined. Since CaMKII does not phosphorylate α or β adducin in vitro (Matsuoka, Y., unpublished results) and PKA does not in vivo (Fig. 1 A), an isoform of PKC is the most likely candidate. It is noteworthy that at least one isoform of PKC, PKCγ, is localized in dendritic spines by immunoelectron microscopy (Tsujino et al., 1990; Saito et al., 1994). Phosphoadducin is likely to be a substrate for protein phosphatase(s) in dendritic spines, which could represent an important aspect of activity-dependent regulation of adducin functions. Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, is present at high levels in hippocampal neurons (Steiner et al., 1992) and is a good candidate for an adducin phosphatase.

Kaibuchi and colleagues have found that adducin is an in vivo substrate for Rho-associated kinase (Rho-kinase) and myosin phosphatase, which are involved in the regulation of actin cytoskeleton in the cells (Amano et al., 1997; Kimura et al., 1998). Phosphorylation by Rho-kinase occurs at a different site from PKC and increases the affinity of α adducin for F-actin (Kimura et al., 1998). It will be of interest to determine localization of Rho-kinase–phosphorylated adducin in neurons and possibly dendritic spines.

The basic MARCKS-related domain of adducin has recently been demonstrated to be required for association of adducin with spectrin and actin (Li et al., 1998). Moreover, activity of adducin in promoting association of spectrin with actin is inhibited by high ionic strength, consistent with an electrostatic origin of binding energy between adducin and actin (data not shown). These findings considered together with the evidence in this study that phosphorylation of a site in the MARCKS-related domain inhibits actin interactions suggest that this domain provides a direct contact with actin. Incorporation of phosphate with its bulk and negative charge into the basic MARCKS-related domain would be anticipated to interfere with electrostatic interactions dependent on positively charged residues. These considerations suggest that the actin contact sites for adducin will include negatively charged residues. Negatively charged residues (aspartate or glutamate) are exposed on the lateral surface of rabbit skeletal actin in positions 1–4, 24, 25, 99, 100, 360, 361, 363, and 364, while residues 167, 288, and 292 are located at the fast-growing ends of actin filaments (Holmes et al., 1990; Kabsch et al., 1990). The negatively charged residues exposed on the lateral surface of actin have been implicated in association with a positively charged lysine-rich loop in the head domain of myosin (Rayment et al., 1993; Schröder et al., 1993) and make up a possible actin–myosin interface (Holmes et al., 1990; Kabsch et al., 1990; Johara et al., 1993). It will be of interest to determine if adducin can inhibit actin-activated Mg2+-ATPase activity of myosin and if such effects are controlled by phosphorylation of adducin.

Nonphosphorylatable mutant adducin (α adducinΔpkc) and spectrin were colocalized as a punctate pattern in the cytoplasm of MDCK/α addΔpkc cells (Fig. 5 f). The identity of structures containing the mutant adducin and spectrin is not known but could represent vesicles in transit between the Golgi and plasma membrane. It is interesting in this regard that adducin and spectrin associate with dynactin, which is a multiprotein complex including an actin-related protein Arp1 or centractin and promotes dynein-mediated vesicle motility along microtubules (Schafer et al., 1994; Holleran et al., 1996). It will be of interest to determine if the structures with the mutant adducin contain other members of the dynactin complex.

We propose adducin as a candidate for a Ca2+/calmodulin- and phosphorylation-sensitive modulator of the organization of spectrin–actin complexes in a variety of dynamic cellular domains. PKC has been demonstrated to be involved in reorganization of the actin cytoskeletons coupling with membrane ruffling in neutrophils (Downey et al., 1992), spreading of platelets (Haimovich et al., 1996), and integrin clustering in lymphocytes (Pardi et al., 1992). Adducin, based on results of this study, is a candidate downstream effector of PKC in these cells and possibly in dendritic spines. Since homologues of mammalian adducin have been identified in Caenorhabditis elegans (Moorthy, S., L. Chen, and V. Bennett. 1997. Mol. Biol. Cell. 8:274a), adducin may have a fundamental role conserved during evolution in regulation of assembly of spectrin–actin complexes in neurons as well as other types of cells.

We are grateful to Dr. P.J. Blackshear for providing recombinant human MARCKS protein and Dr. T. Garver for technical assistance for rat hippocampal slice experiments. We also thank Suraj Moorthy for preparing and providing an HA-tag α adducin construct and α and β adducin–specific antibodies, and Mildred McAdams and Judith Phelps for peptide synthesis and analysis.

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid

CNQX

6-cyano-7-nitroquinoxaline-2,3-dione

HA

hemagglutinin

IBMX

3-isobutyl-1-methylxanthine

MARCKS

myristoylated alanine-rich C kinase substrate

NMDA

N-methyl-d-aspartate

PKA

cAMP-dependent protein kinase

PKC

protein kinase C

PKM

the catalytic domain of protein kinase C

PMA

phorbol 12-myristate 13-acetate

Abeliovich
A
,
Chen
C
,
Goda
Y
,
Silva
AJ
,
Stevens
CF
,
Tonegawa
S
Modified hippocampal long-term potentiation in PKCγ-mutant mice
Cell
1993
75
1253
1262
[PubMed]
Aderem
A
The MARCKS brothers: a family of protein kinase C substrates
Cell
1992
71
713
716
[PubMed]
Amano
M
,
Chihara
K
,
Kimura
K
,
Fukata
Y
,
Nakamura
N
,
Matsuura
Y
,
Kaibuchi
K
Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase
Science
1997
275
1308
1311
[PubMed]
Andrews
DM
,
Kitchin
J
,
Seale
PW
Solid-phase synthesis of a range of o-phosphorylated peptides by post-assembly phosphitylation and oxidation
Int J Pept Prot Res
1991
38
469
475
[PubMed]
Bennett
V
,
Gardner
K
,
Steiner
JP
Brain adducin: a protein kinase C substrate that may mediate site-directed assembly at the spectrin-actin junction
J Biol Chem
1988
263
5860
5869
[PubMed]
Blackshear
PJ
The MARCKS family of cellular protein kinase C substrates
J Biol Chem
1993
268
1501
1504
[PubMed]
Brewer
GJ
,
Torricelli
JR
,
Evege
EK
,
Price
PJ
Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination
J Neurosci Res
1993
35
567
576
[PubMed]
Cohen
CM
,
Foley
SF
Phorbol ester- and Ca++-dependent phosphorylation of human red cell membrane skeletal proteins
J Biol Chem
1986
261
7701
7709
[PubMed]
Coss
RG
,
Perkel
DH
The function of dendritic spines—a review of theoretical issues
Behav Neurol Biol
1985
44
151
185
[PubMed]
Davis
JQ
,
Bennett
V
Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits
J Biol Chem
1983
258
7757
7766
[PubMed]
Dent
EW
,
Meiri
KF
GAP-43 phosphorylation is dynamically regulated in individual growth cones
J Neurobiol
1992
23
1037
1053
[PubMed]
Derick
LH
,
Liu
SC
,
Chishti
AH
,
Palek
J
Protein immunolocalization in the spread erythrocyte membrane skeleton
Eur J Cell Biol
1992
57
317
320
[PubMed]
Dong
L
,
Chapline
C
,
Mousseau
B
,
Fowler
L
,
Ramsay
MK
,
Stevens
JL
,
Jaken
S
35H, a sequence isolated as a protein kinase C binding protein, is a novel member of the adducin family
J Biol Chem
1995
270
25534
25540
[PubMed]
Downey
GP
,
Chan
CK
,
Lea
P
,
Takai
A
,
Grinstein
S
Phorbol ester–induced actin assembly in neutrophils: role of protein kinase C
J Cell Biol
1992
116
695
706
[PubMed]
Ehlers
MD
,
Tingley
WG
,
Huganir
RL
Regulated subcellular distribution of the NR1 subunit of the NMDA receptor
Science
1995
269
1734
1737
[PubMed]
Ehlers
MD
,
Zhang
S
,
Bernhardt
JP
,
Huganir
RL
Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit
Cell
1996
84
745
755
[PubMed]
Fairbanks
G
,
Steck
T
,
Wallach
D
Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane
Biochemistry
1971
10
2606
2617
[PubMed]
Fifkova
E
,
Delay
RJ
Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity
J Cell Biol
1982
95
345
350
[PubMed]
Fifkova, E., and M. Morales. 1991. The neuronal cytoskeleton and its possible role in synaptic plasticity. In Development and Plasticity of the Visual System. J.R. Cronley-Dillon, editor. Macmillan, London. 133–147.
Fifkova
E
,
Van Harreveld
A
Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area
J Neurocytol
1977
6
211
230
[PubMed]
Gardner
K
,
Bennett
V
A new erythrocyte membrane-associated protein with calmodulin binding activity
J Biol Chem
1986
261
1339
1348
[PubMed]
Gardner
K
,
Bennett
V
Modulation of spectrin-actin assembly by erythrocyte adducin
Nature
1987
328
359
362
[PubMed]
Garver
TD
,
Oyler
GA
,
Harris
KA
,
Polavarapu
R
,
Damuni
Z
,
Lehman
RAW
,
Billingsley
ML
Tau phosphorylation in brain slices: pharmacological evidence for convergent effects of protein phosphatases on tau and mitogen-activated protein kinase
Mol Pharmacol
1995
47
745
756
[PubMed]
Garver
TD
,
Ren
Q
,
Tuvia
S
,
Bennett
V
Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin
J Cell Biol
1997
137
703
714
[PubMed]
Geinisman
Y
,
de Toledo-Morrell
L
,
Morrell
F
Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities
Brain Res
1991
566
77
88
[PubMed]
Gold
J
,
Bear
MF
A model of dendritic spine Ca2+concentration exploring possible bases for a sliding synaptic modification threshold
Proc Natl Acad Sci USA
1994
91
3941
3945
[PubMed]
Guthrie
PB
,
Segal
M
,
Kater
SB
Independent regulation of calcium revealed by imaging dendritic spines
Nature
1991
354
78
80
Haimovich
B
,
Kaneshiki
N
,
Ji
P
Protein kinase C regulates tyrosine phosphorylation of pp125FAK in platelets adherent to fibrinogen
Blood
1996
87
152
161
[PubMed]
Harris
DM
,
Jensen
FE
,
Tsao
BH
Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation
J Neurosci
1992
12
2685
2705
[PubMed]
Harris
KM
,
Kater
SB
Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function
Annu Rev Neurosci
1994
17
341
371
[PubMed]
Hartwig
JH
,
Thelen
M
,
Rosen
A
,
Janmey
PA
,
Nairn
AC
,
Aderem
A
MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin
Nature
1992
356
618
622
[PubMed]
Holleran
EA
,
Tokito
MK
,
Karki
S
,
Holzbaur
ELF
Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles
J Cell Biol
1996
135
1815
1829
[PubMed]
Holmes
KC
,
Popp
D
,
Gebhard
W
,
Kabsch
W
Atomic model of the actin filament
Nature
1990
347
44
49
[PubMed]
Holmes
WR
Is the function of dendritic spines to concentrate calcium?
Brain Res
1990
519
338
342
[PubMed]
Hosokawa
T
,
Rusakov
DA
,
Bliss
TVP
,
Fine
A
Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP
J Neurosci
1995
15
5560
5573
[PubMed]
Hrabetova
S
,
Sacktor
TC
Bidirectional regulation of protein kinase Mζ in the maintenance of long-term potentiation and long-term depression
J Neurosci
1996
16
5324
5333
[PubMed]
Hu
RJ
,
Moorthy
S
,
Bennett
V
Expression of functional domains of BetaG-spectrin disrupts epithelial morphology in cultured cells
J Cell Biol
1995
128
1069
1080
[PubMed]
Hughes
CA
,
Bennett
V
Adducin: a physical model with implication for function in assembly of spectrin-actin complexes
J Biol Chem
1995
270
18990
18996
[PubMed]
Johara
M
,
Toyoshima
YY
,
Ishijima
A
,
Kojima
H
,
Yanagida
T
,
Sutoh
K
Charge-reversion mutagenesis of Dictyosteliumactin to map the surface recognized by myosin during ATP-driven sliding motion
Proc Natl Acad Sci USA
1993
90
2127
2131
[PubMed]
Joshi
R
,
Bennett
V
Mapping the domain structure of human erythrocyte adducin
J Biol Chem
1990
265
13130
13136
[PubMed]
Joshi
R
,
Gilligan
DM
,
Otto
E
,
McLaughlin
T
,
Bennett
V
Primary structure and domain organization of human α and β adducin
J Cell Biol
1991
115
665
675
[PubMed]
Kabsch
W
,
Mannherz
HG
,
Suck
D
,
Pai
EF
,
Holmes
KC
Atomic structure of the actin:DNase 1 complex
Nature
1990
347
37
44
[PubMed]
Kaiser
HW
,
O'Keefe
E
,
Bennett
V
Adducin: Ca2+-dependent association with sites of cell–cell contact
J Cell Biol
1989
109
557
569
[PubMed]
Kawamoto
S
,
Bengur
AR
,
Seller
JR
,
Adelstein
RS
In situphosphorylation of human platelet myosin heavy and light chains by protein kinase C
J Biol Chem
1989
264
2258
2265
[PubMed]
Kennedy
MB
The postsynaptic density
Curr Opin Neurobiol
1993
3
732
737
[PubMed]
Kim
J
,
Blackshear
PJ
,
Johnson
JD
,
McLaughlin
S
Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin
Biophys J
1994
67
227
237
[PubMed]
Kimura
K
,
Fukata
Y
,
Matsuoka
Y
,
Bennett
V
,
Matsuura
Y
,
Okawa
K
,
Iwamatsu
A
,
Kaibuchi
K
Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase
J Biol Chem
1998
273
5542
5548
[PubMed]
Koch
C
,
Zador
A
The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization
J Neurosci
1993
13
413
422
[PubMed]
Kuhlman
PA
,
Hughes
CA
,
Bennett
V
,
Fowler
VM
A new function for adducin, calcium calmodulin regulated capping of the barbed ends of actin filaments
J Biol Chem
1996
271
7986
7991
[PubMed]
Lambert
S
,
Bennett
V
Postmitotic expression of ankyrinR and βR-spectrin in discrete neuronal populations of the rat brain
J Neurosci
1993
13
3725
3735
[PubMed]
Landis
DM
,
Reese
TS
Cytoplasmic organization in cerebellar dendritic spines
J Cell Biol
1983
97
1169
1178
[PubMed]
Li
X
,
Bennett
V
Identification of the spectrin subunit domains required for formation of spectrin/adducin/actin complexes
J Biol Chem
1996
271
15695
15702
[PubMed]
Li, X., Y. Matsuoka, and V. Bennett. 1998. Adducin preferentially recruits spectrin to the fast-growing ends of actin filaments in a complex requiring the MARCKS-related domain and a newly defined oligomerization domain. J. Biol. Chem. In press.
Liao
J
,
Lowthert
LA
,
Ku
N-O
,
Ferrandes
R
,
Omary
MB
Dynamics of human keratin 18 phosphorylation: polarized distribution of phosphorylated keratins in simple epithelial tissues
J Cell Biol
1995
131
1291
1301
[PubMed]
Ling
E
,
Gardner
K
,
Bennett
V
Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes
J Biol Chem
1986
261
13875
13878
[PubMed]
Lledo
PM
,
Hjelmstad
GO
,
Mukherji
S
,
Soderling
TR
,
Malenka
RC
,
Nicoll
RA
Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism
Proc Natl Acad Sci USA
1995
92
11175
11179
[PubMed]
Malenka
RC
,
Kauer
JA
,
Perkel
DJ
,
Mauk
MD
,
Kelly
PT
,
Nicoll
RA
,
Waxham
MN
An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation
Nature
1989
340
554
557
[PubMed]
Malinow
R
,
Schulman
H
,
Tsien
RW
Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP
Science
1989
245
862
866
[PubMed]
Matsuoka
Y
,
Nishizawa
K
,
Yano
T
,
Shibata
M
,
Ando
S
,
Takahashi
T
,
Inagaki
M
Two different protein kinases act on a different time schedule as glial filament kinases during mitosis
EMBO (Eur Mol Biol Organ) J
1992
11
2895
2902
[PubMed]
Matsuoka
Y
,
Nishikawa
M
,
Toyoda
H
,
Hirokawa
Y
,
Ando
S
,
Yano
T
,
Tanabe
K
,
Yatani
R
Mediation of the physiological response of platelets by interactions of spectrin and protein 4.1 with the cytoskeleton
Biochem Biophys Res Commun
1994
14
111
119
[PubMed]
Matsuoka
Y
,
Hughes
CA
,
Bennett
V
Adducin regulation: definition of the calmodulin-binding domain and sites of phosphorylation by protein kinases A and C
J Biol Chem
1996
271
25157
25166
[PubMed]
McLaughlin
S
,
Aderem
A
The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions
Trends Biochem Sci
1995
20
272
276
[PubMed]
Mische
SM
,
Mooseker
MS
,
Morrow
JS
Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin–actin binding
J Cell Biol
1987
105
2837
2845
[PubMed]
Morales, M., and E. Fifkova. 1989. In situ localization of myosin and actin in dendritic spines with the immunogold technique. J. Comp. Neurol. 279:666–674.
Mulkey
RM
,
Endo
S
,
Shenolikar
S
,
Malenka
RC
Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression
Nature
1994
369
486
488
[PubMed]
Müller
W
,
Connor
JA
Dendritic spines as individual neuronal compartments for synaptic Ca2+responses
Nature
1991
354
73
76
[PubMed]
Nishizawa
K
,
Yano
T
,
Shibata
M
,
Ando
S
,
Saga
S
,
Takahashi
T
,
Inagaki
M
Specific localization of phosphointermediate filament protein in the constricted area of dividing cells
J Biol Chem
1991
266
3074
3079
[PubMed]
Palfrey
H
,
Waseem
A
Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins
J Biol Chem
1985
260
16021
16029
[PubMed]
Papa
M
,
Bundman
MC
,
Greenberger
V
,
Segal
M
Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons
J Neurosci
1995
15
1
11
[PubMed]
Pardee
JD
,
Spudich
JA
Purification of muscle actin
Methods Cell Biol
1982
24
217
289
[PubMed]
Pardi
R
,
Inverardi
L
,
Rugarli
C
,
Bender
JR
Antigen-receptor complex stimulation triggers protein kinase C–dependent CD11a/CD18- cytoskeleton association in T lymphocytes
J Cell Biol
1992
116
1211
1220
[PubMed]
Pollard
TD
Measurement of rate constants for actin filament elongation in solution
Anal Biochem
1983
134
406
412
[PubMed]
Quinlan
EM
,
Halpain
S
Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors
Neuron
1996
16
357
368
[PubMed]
Rayment
I
,
Holden
HM
,
Whittaker
M
,
Yohn
CB
,
Lorenz
M
,
Holmes
KC
,
Milligan
RA
Structure of the actin-myosin complex and its implications for muscle contraction
Science
1993
261
58
65
[PubMed]
Saito
N
,
Tsujino
T
,
Fukuda
K
,
Tanaka
C
α-, βII- and γ-subspecies of protein kinase C localized in the monkey hippocampus: pre- and post-synaptic localization of γ-subspecies
Brain Res
1994
656
245
256
[PubMed]
Schafer
DA
,
Gill
SR
,
Cooper
JA
,
Heuser
JE
,
Schroer
TA
Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin
J Cell Biol
1994
126
403
412
[PubMed]
Schröder
RR
,
Manstein
DJ
,
Jahn
WJ
,
Holden
H
,
Rayment
I
,
Holmes
KC
,
Spudich
JA
Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1
Nature
1993
364
171
174
[PubMed]
Schuster
T
,
Krug
M
,
Wenzel
J
Spinules in axospinous synapses of the rat dentate gyrus: changes in density following long-term potentiation
Brain Res
1990
523
171
174
[PubMed]
Seidel
B
,
Zuschratter
W
,
Wex
H
,
Garner
CC
,
Gundelfinger
ED
Spacial and sub-cellular localization of the membrane cytoskeleton-associated protein α-adducin in the rat brain
Brain Res
1995
700
13
24
[PubMed]
Silva
AJ
,
Stevens
CF
,
Tonegawa
S
,
Wang
Y
Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice
Science
1992
257
201
206
[PubMed]
Steiner
JP
,
Dawson
TM
,
Fotuhi
M
,
Glatt
CE
,
Snowman
AM
,
Cohen
N
,
Snyder
SH
High brain densities of the immunophilin FKBP colocalized with calcineurin
Nature
1992
358
584
587
[PubMed]
Taylor
KA
,
Taylor
DW
Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar α-actinin-F-actin crosslinking
Biophys J
1994
67
1976
1983
[PubMed]
Tingley
WG
,
Roche
KW
,
Thompson
AK
,
Huganir
RL
Regulation of NMDA receptor phosphorylation by alternative splicing of the COOH-terminal domain
Nature
1993
364
70
73
[PubMed]
Tsujino
T
,
Kose
A
,
Saito
N
,
Tanaka
C
Light and electron microscopic localization of βI-, βII-, and γ-subspecies of protein kinase C in rat cerebral cortex
J Neurosci
1990
10
870
884
[PubMed]
Weber
A
,
Northrop
J
,
Bishop
MF
,
Ferrone
FA
,
Mooseker
MS
Nucleation of actin polymerization by villin and elongation at subcritical monomer concentration
Biochemistry
1987
26
2528
2536
[PubMed]
Westrum
LE
,
Jones
DH
,
Gray
EG
,
Barron
J
Microtubules, dendritic spines and spine apparatuses
Cell Tissue Res
1980
208
171
181
[PubMed]
Wiedenmann
B
,
Franke
WW
Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr38,000 characteristic of presynaptic vesicles
Cell
1985
41
1017
1028
[PubMed]
Wyszynski
M
,
Lin
J
,
Rao
A
,
Nigh
E
,
Beggs
AH
,
Craig
AM
,
Sheng
M
Competitive binding of α-actinin and calmodulin to the NMDA receptor
Nature
1997
385
439
442
[PubMed]
Yuste
R
,
Denk
W
Dendritic spines as basic functional units of neuronal integration
Nature
1995
375
682
684
[PubMed]
Ziv
NE
,
Smith
S J
Evidence for a role of dendritic filopodia in synaptogenesis and spine formation
Neuron
1996
17
91
102
[PubMed]

Address all correspondence to Yoichiro Matsuoka, Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, NC 27710. Tel.: (919) 684-3105. Fax: (919) 684-3590.