The fine structure of the erythrocyte during development in rabbit and human fetal liver has been studied. A morphologic description of representative erythropoietic cells and their relationship to the hepatic parenchyma is presented. Erythrocyte development was accompanied by a decrease in nuclear and cell size, fragmentation and eventual loss of nucleoli, and progressive clumping of chromatin at the nuclear margin. Mitochondria, endoplasmic reticulum, and Golgi elements decreased in size or abundance and eventually disappeared. Ribosome concentration initially increased, but subsequently diminished as the cytoplasm increased in electron opacity, probably through the accumulation of hemoglobin. Similar dense material, interpreted to be hemoglobin, infiltrated the nuclear annuli and, in some cases, appeared to extend into the interchromatin regions. There was a marked decrease in the number of annuli of the nuclear envelope. Possible relationships between nucleus and cytoplasm and of RNA to hemoglobin synthesis are discussed. In rabbits, erythroid and hepatic cells were separated by a 200 to 400 A space limited by the undulatory membranes of the respective cells. Membranes of adjacent erythropoietic cells were parallel and more closely apposed (100 to 200 A). In humans, relationship between various cells exhibited wide variation. Ferritin particles were observed within forming and formed "rhopheocytotic" vesicles.