A rat brain synaptosomal protein of 110,000 M(r) present in a fraction highly enriched in adenylyl cyclase activity was microsequenced (Castets, F., G. Baillat, S. Mirzoeva, K. Mabrouk, J. Garin, J. d'Alayer, and A. Monneron. 1994. Biochemistry. 33:5063-5069). Peptide sequences were used to clone a cDNA encoding a novel, 780-amino acid protein named striatin. Striatin is a member of the WD-repeat family (Neer, E.J., C.J. Schmidt, R. Nambudripad, and T.F. Smith. 1994. Nature (Lond.). 371:297-300), the first one known to bind calmodulin (CaM) in the presence of Ca++. Subcellular fractionation shows that striatin is a membrane-associated, Lubrol-soluble protein. As analyzed by Northern blots, in situ hybridization, and immunocytochemistry, striatin is localized in the central nervous system, where it is confined to a subset of neurons, many of which are associated with the motor system. In particular, striatin is conspicuous in the dorsal part of the striatum, as well as in motoneurons. Furthermore, striatin is essentially found in dendrites, but not in axons, and is most abundant in dendritic spines. We propose that striatin interacts, through its WD-repeat domain and in a CaM/Ca(++)-dependent manner, with one or several members of a surrounding cluster of molecules engaged in a Ca(++)-signaling pathway specific to excitatory synapses.

This content is only available as a PDF.