We have isolated and characterized the gene encoding a novel essential nucleoporin of 82 kD, termed NUP82. Indirect immunofluorescence of cells containing an epitope tagged copy of the NUP82 localized it to the nuclear pore complex (NPC). Primary structure analysis indicates that the COOH-terminal 195 amino acids contain a putative coiled-coil domain. Deletion of the COOH-terminal 87 amino acids of this domain causes slower cell growth; deletion of the COOH-terminal 108 amino acids results in slower growth at 30 degrees C and lethality at 37 degrees C. Cells in which the last 108 amino acids of NUP82 have been deleted, when shifted to 37 degrees C, do not display any gross morphological defects in their nuclear pore complexes or nuclear envelopes. They do, however, accumulate poly(A)+ RNA in their nuclei at 37 degrees C. We propose that NUP82 acts as a linker to tether nucleoporins directly involved in nuclear transport to pore scaffolding via its coiled-coil domain.

This content is only available as a PDF.