The Drosophila Hsr-omega puff, one of the largest heat shock puffs, reveals a very unusual gene, identified by heat shock but constitutively active in nearly all cell types. Surprisingly, Hsr-omega yields two transcription end-products with very different roles. The larger, omega-n, is a nuclear RNA with characteristics suggesting a new class of nuclear RNAs. Although it neither leaves the nucleus nor undergoes processing, omega-n RNA is polyadenylated, showing that polyadenylation is not limited to cytoplasmic RNA, but possibly has a function in the nucleus. The amount of omega-n within the nucleus is specifically regulated by both transcription and turnover. Heat shock and several other agents cause rapid increases in omega-n. A rapid return to constitutive levels follows withdrawal of the agents. Degradation of omega-n is inhibited by actinomycin D, suggesting a novel intranuclear mechanism for RNA turnover. Within the nucleus, some omega-n RNA is concentrated at the transcription site; however, most is evenly distributed over the nucleus, showing no evidence of a concentration gradient which might be produced by simple diffusion from the site of transcription. Previous studies suggested that omega-n has a novel regulatory role in the nucleus. The actinomycin D-sensitive degradation system makes possible rapid changes in the amount of omega-n, allowing the putative regulatory activities to reflect cellular conditions at a given time. Omega-n differs from the best studied nuclear RNAs, snRNAs, in many ways. Omega-n demonstrates the existence of intranuclear mechanisms for RNA turnover and localization that may be used by a new class of nuclear RNAs.

This content is only available as a PDF.