We have obtained evidence that a known intracellular component of the cadherin cell-cell adhesion machinery, beta-catenin, contributes to the development of the body axis in the frog Xenopus laevis. Vertebrate beta-catenin is homologous to the Drosophila segment polarity gene product armadillo, and to vertebrate plakoglobin (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science (Wash. DC). 254: 1359-1361.). Beta-Catenin was found present in all Xenopus embryonic stages examined, and associated with C-cadherin, the major cadherin present in early Xenopus embryos. To test beta-catenin's function, affinity purified Fab fragments were injected into ventral blastomeres of developing four-cell Xenopus embryos. A dramatic phenotype, the duplication of the dorsoanterior embryonic axis, was observed. Furthermore, Fab injections were capable of rescuing dorsal features in UV-ventralized embryos. Similar phenotypes have been observed in misexpression studies of the Wnt and other gene products, suggesting that beta-catenin participates in a signaling pathway which specifies embryonic patterning.

This content is only available as a PDF.