The rat bladder carcinoma cell line NBT-II exhibits two completely different responses to acidic FGF (aFGF): at high cell density, aFGF is a potent mitogen whereas at low cell density, aFGF acts as a scattering agent that can convert the epithelial NBT-II cells into fibroblastic-like, motile cells. The basis of the dual action of aFGF has been approached by using substances interfering with the transducing pathways known to be activated by growth factors. Genistein and tyrphostin, two inhibitors of tyrosine kinases, inhibit both cell scattering and mitogenesis induced by aFGF. Conversely, sodium orthovanadate, a potent inhibitor of tyrosine phosphatases can reproduce the two effects of aFGF, indicating that protein tyrosine phosphorylations are determinant in the two pathways. In contrast, transforming growth factor (TGF)-beta 1 is a strong inhibitor of DNA synthesis induced by aFGF but has no effect on cell scattering, providing evidence that the two pathways are divergent. In an attempt to determine the specificity of the pathways of aFGF we found that the level of cAMP, which can be externally elevated, is of pivotal importance in distinguishing between the two transducing pathways leading to either DNA replication or cell dispersion. Forskolin, 8-bromo cAMP, dibutyryl-cAMP, and cholera toxin are all capable of potentiating the mitogenic effect of aFGF while strongly inhibiting its scattering action. Moreover, addition of any of these substances to NBT-II cells converted into fibroblasts immediately induces their reversion towards an epithelial phenotype. These findings support a role for cAMP as a modulator of the effects of aFGF. Moreover, basal cAMP synthesis, which is not affected by aFGF, is higher in sparse than in dense cultures indicating that the level of cAMP depends on the status of the cell. Altogether, these results suggest that establishment and maintenance of the epithelial state require a precise regulation of cAMP level.

This content is only available as a PDF.