We have produced human cyclin A in Escherichia coli and investigated how it generates H1 kistone kinase activity when added to cyclin-free extracts prepared from parthenogenetically activated Xenopus eggs. Cyclin A was found to form a major complex with cdc2, and to bind cdk2/Eg1 only poorly. No lag phase was detected between the time when cyclin A was added and the time when H1 histone kinase activity was produced in frog extracts, even in the presence of 2 mM vanadate, which blocks cdc25 activity. Essentially identical results were obtained using extracts prepared from starfish oocytes. We conclude that formation of an active cyclin A-cdc2 kinase during early development escapes an inhibitory mechanism that delays formation of an active cyclin B-cdc2 kinase. This inhibitory mechanism involves phosphorylation of cdc2 on tyrosine 15. Okadaic acid (OA) activated cyclin B-cdc2 kinase and strongly reduced tyrosine phosphorylation of cyclin B-associated cdc2, even in the presence of vanadate. 6-dimethylamino-purine, a reported inhibitor of serine-threonine kinases, suppressed OA-dependent activation of cyclin B-cdc2 complexes. This indicates that the kinase(s) which phosphorylate(s) cdc2 on inhibitory sites can be inactivated by a phosphorylation event, itself antagonized by an OA-sensitive, most likely type 2A phosphatase. We also found that cyclin B- or cyclin A-cdc2 kinases can induce or accelerate conversion of the cyclin B-cdc2 complex from an inactive into an active kinase. Cyclin B-associated cdc2 does not undergo detectable phosphorylation on tyrosine in egg extracts containing active cyclin A-cdc2 kinase, even in the presence of vanadate. We propose that the active cyclin A-cdc2 kinase generated without a lag phase from neo-synthesized cyclin A and cdc2 may cause a rapid switch in the equilibrium of cyclin B-cdc2 complexes to the tyrosine-dephosphorylated and active form of cdc2 during early development, owing to strong inhibition of the cdc2-specific tyrosine kinase(s). This may explain why early cell cycles are so rapid in many species.

This content is only available as a PDF.