Cytolytic lymphocytes contain specialized lytic granules whose secretion during cell-mediated cytolysis results in target cell death. Using serial section EM of RNK-16, a natural killer cell line, we show that there are structurally distinct types of granules. Each type is composed of varying proportions of a dense core domain and a multivesicular cortical domain. The dense core domains contain secretory proteins thought to play a role in cytolysis, including cytolysin and chondroitin sulfate proteoglycan. In contrast, the multivesicular domains contain lysosomal proteins, including acid phosphatase, alpha-glucosidase, cathepsin D, and LGP-120. In addition to their protein content, the lytic granules have other properties in common with lysosomes. The multivesicular regions of the granules have an acidic pH, comparable to that of endosomes and lysosomes. The granules take up exogenous cationized ferritin with lysosome-like kinetics, and this uptake is blocked by weak bases and low temperature. The multivesicular domains of the granules are rich in the 270-kD mannose-6-phosphate receptor, a marker which is absent from mature lysosomes but present in earlier endocytic compartments. Thus, the natural killer granules represent an unusual dual-function organelle, where a regulated secretory compartment, the dense core, is contained within a pre-lysosomal compartment, the multivesicular domain.

This content is only available as a PDF.