I have tested two contending views of chromosome-to-pole movement in anaphase. Chromosomes might be pulled poleward by a traction fiber consisting of the kinetochore microtubules and associated motors, or they might propel themselves by a motor in the kinetochore. I cut through the spindle of demembranated grasshopper spermatocytes between the chromosomes and one pole and swept the polar region away, removing a portion of the would-be traction fiber. Chromosome movement continued, and in the best examples, chromosomes moved to within 1 micron of the cut edge. There is nothing beyond the edge to support movement, and a push from the rear is unlikely because cuts in the interzone behind the separating chromosomes did not stop movement. Therefore, I conclude that the motor must be in the kinetochore or within 1 micron of it. Less conclusive evidence points to the kinetochore itself as the motor. The alternative is an external motor pulling on the kinetochore microtubules or directly on the kinetochore. A pulling motor would move kinetochore microtubules along with the chromosome, so that in a cut half-spindle, the microtubules should protrude from the cut edge as chromosomes move toward it. No protrusion was seen; however, the possibility that microtubules depolymerize as they are extruded, though unlikely, is not ruled out. What is certain is that the motor for poleward chromosome movement in anaphase must be in the kinetochore or very close to it.

This content is only available as a PDF.