Mouse-hatched blastocysts cultured in vitro will attach and form outgrowths of trophoblast cells on appropriate substrates, providing a model for implantation. Immediately after hatching, the surfaces of blastocysts are quiescent and are not adhesive. Over the period 24-36 h post-hatching, blastocysts cultured in serum-free medium become adhesive and attach and spread on the extracellular matrix components fibronectin, laminin, and collagen type IV in a ligand specific manner. Attachment and trophoblast outgrowth on these substrates can be inhibited by addition to the culture medium of an antibody, anti-ECMr (anti-extracellular matrix receptor), that recognizes a group of 140-kD glycoproteins similar to those of the 140-kD extracellular matrix receptor complex (integrin) recognized in avian cells by CSAT and JG22 monoclonal antibodies. Addition to the culture medium of a synthetic peptide containing the Arg-Gly-Asp tripeptide cell recognition sequence of fibronectin inhibits trophoblast outgrowth on both laminin and fibronectin. However, the presence of the peptide does not affect attachment of the blastocysts to either ligand. Immunoprecipitation of 125I surface-labeled embryos using anti-ECMr reveals that antigens recognized by this antibody are exposed on the surfaces of embryos at a time when they are spreading on the substrate, but are not detectable immediately after hatching. Immunofluorescence experiments show that both the ECMr antigens and the cytoskeletal proteins vinculin and talin are enriched on the cell processes and ventral surfaces of trophectoderm cells in embryo outgrowths, in patterns similar to those seen in fibroblasts, and consistent with their role in adhesion of the trophoblast cells to the substratum.

This content is only available as a PDF.