INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin-heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest migration. After injection lateral to the mesencephalic neural tube, the antibody had a primarily unilateral distribution. INO binding was observed in the basal laminae surrounding the neural tube, ectoderm, and endoderm, as well as within the cranial mesenchyme on the injected side of the embryo. This staining pattern was indistinguishable from those observed with antibodies against laminin or heparan sulfate proteoglycan. The injected antibody remained detectable for 18 h after injection, with the intensity of immuno-reactivity decreasing with time. Embryos ranging from the neural fold stage to the 9-somite stage were injected with INO and subsequently allowed to survive for up to 1 d after injection. These embryos demonstrated severe abnormalities in cranial neural crest migration. The predominant defects were ectopic neural crest cells external to the neural tube, neural crest cells within the lumen of the neural tube, and neural tube deformities. In contrast, embryos injected with antibodies against laminin or heparan sulfate proteoglycan were unaffected. When embryos with ten or more somites were injected with INO, no effects were noted, suggesting that embryos are sensitive for only a limited time during their development. Immunoprecipitation of the INO antigen from 2-d chicken embryos revealed a 200-kD band characteristic of laminin and two broad smears between 180 and 85 kD, which were resolved into several bands at lower molecular mass after heparinase digestion. These results indicate that INO precipitates both laminin and proteoglycans bearing heparan sulfate residues. Thus, microinjection of INO causes functional blockage of a laminin-heparan sulfate proteoglycan complex, resulting in abnormal cranial neural crest migration. This is the first evidence that a laminin-heparan sulfate proteoglycan complex is involved in aspects of neural crest migration in vivo.

This content is only available as a PDF.