The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time-dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.

This content is only available as a PDF.